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Abstract. We present a method of simultaneously calculating both the internal
and external fields of arbitrarily shaped dielectric and metallic axisymmetric
nanoparticles. By using a set of distributed spherical vector wave functions
that are exact solutions to Maxwell’s equations and form a complete, linearly
independent set on the particle surface, we approximate the surface Green
functions of particles. In this way we can enforce the boundary conditions at the
interface and represent the electromagnetic fields at the surface to an arbitrary
precision. With the boundary conditions at the particle surface satisfied, the
electromagnetic fields are uniquely determined at any point in space, whether
internal or external to the particle. Furthermore, the residual field error at the
particle surface can be shown to give an upper bound error for the field solutions at
any point in space. We show the accuracy of this method with two important areas
studied widely in literature, photonic nanojets and the internal field structure of
nano-particles.
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1. Introduction

There has been constant interest in the field of nano-optics since the publication of
Mie’s seminal paper describing scattering from nanoparticles [1]. Recent advances in
production techniques have led to the manufacture of nanoparticles with vast ranges
of sizes, shapes and materials. This broad range of nanoparticles display a wide
variety of interesting optical properties. Metallic nanostructures, for instance, due to
their highly tunable particle resonances have near field applications such as surface
enhancement of fluorescence and Raman scattering [2]. Another near field effect that
has been of significant interest recently is the formation of photonic nanojets [3], which
are intense, narrow beams emerging from the shadow side of illuminated dielectric
nanoparticles. These jets can appear for a wide range of particle parameters and show
great potential applications in sub-wavelength resolution microscopy [4] and super
high density optical data storage [5]. Aside from these near field effects, accurately
modelling the far field properties of nanoparticles is of great interest in many different
fields. In atmospherics, the ability to study how satellite communications are effected
by clouds, dust and ice are of importance [6]. Also, the investigation of the optical
properties of cosmic dust grains detected in astronomical objects are of importance to
astrophysics [7].

Optical properties can be calculated via many different methods but a particular
technique may only be suitable for a specific region of space or specific type of particle.
The Finite Difference Time Domain technique (FDFT) [8], for instance, is one of the
most popular methods of finding the near field properties, but it is computationally
demanding, able to find the fields only on on a predefined grid, and must be calculated
for each different incident field. The T-matrix or Null Field method with Discrete
Sources (NFM-DS) [9] is widely used for calculating the properties of elongated
particles. However, this method can only find the fields of interest outside a particle’s
smallest circumscribing sphere, which severely limits the near field information for
elongated particles. Existing surface Green function methods which use localised
sources [10],[11] have the advantage of being able to find the fields at any point in
space, but are limited to particles of low aspect ratio due to the use of functions defined
at the origin of coordinates to enforce the boundary conditions, which produce an ill
conditioned set of equations for elongated particles.

In this paper we present a new method of calculating approximate surface Green
functions for homogeneous particles via a distributed set of functions and Moore-
Penrose pseudo-inverse matrices. In this way, the electromagnetic fields can be
determined with high precision at all points in space, even for metallic or for very
elongated dielectric particles.

2. Theory

2.1. Maxwell’s equations and boundary conditions

We can write Maxwell’s equations as
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with kt = ω
√

εtµt and t = i or t = s where i corresponds to an internal field and s is
a scattered field.
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At the interface between penetrable materials such as dielectrics and metals
with finite conductivity, the tangential components of the electromagnetic fields are
continuous, i.e. the fields are subject to the boundary conditions:

n̂(p)× (E0(p) + Es(p)) = n̂(p)×Ei(p), (2)
n̂(p)× (H0(p) + Hs(p)) = n̂(p)×Hi(p), , (3)

where p is a point on the surface and n̂(p) is the unitary normal to the surface at p.

2.2. Particle geometry and field expansions

A diagramatical representation of a typical elongated axisymmetric nanostructure
in shown in Fig. 1, along with the location of distributed Spherical Vector Wave
Function (SVWF) sources within the particle. Due to the symmetry of the particle, the

Figure 1. Typical geometry of an axisymmetric particle showing the surface of
the scatterer S separating the interior domain Di from the exterior domain Ds,
and the unitary normal n̂ at a point on the surface. The fields of interest, Ei,s

are the internal and scattered fields and are expanded in terms of the distributed
SVWF’s with origins marked by crosses. The major and minor axes of the particle
are a and b, respectively.

azimuthal modes decouple and the problem can be solved for each mode individually.
The distributed SVWF’s are the lowest order functions for each azimuthal mode
in question, Ml=max(1,|m|),m and Nl=max(1,|m|),m: they are complete and linearly
independent at the particle surface if it is sufficiently smooth, as well as being exact
solutions to Maxwell’s equations [12].

Consider the set of vectors in compact notation; |F t
ν >= [M t

ν ,−iCtN t
ν ] for

1 ≤ ν ≤ νt
Max and |F t

ν >= [N t
ν ,−iCtM t

ν ] for νt
Max+1 ≤ ν ≤ 2νt

Max where ν is an index
that takes into account the index of the SVWF source point and the azimuthal mode,
2νt

Max is the total number of functions used in the expansion, and Ct =
√

εt/µt. In
terms of this notation, the explicit form of the field expansions in terms of distributed
lowest order SVWF’s is

Ft =
[

Et

Ht

]
= ct

ν |F t
ν >, (4)

where ct
ν are the expansion coefficients, and we sum over repeated indices.
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2.3. Surface Green Functions

The surface Green function (SGF), G, gives an exact relation between the internal
and scattered fields and the incident fields, F0, in terms of the surface integral [11].

F =
∫

S

GF0ds, (5)

where F represents the internal fields inside the particle and the scattered fields outside
the particle. The SGF is a function solely of the particle in question (not the incident
field), and, once calculated, can be used to find the field at any point from any incident
field. We show in this section how to find numerically efficient approximations of Eq.(5)
by using the boundary conditions.

We can enforce the boundary conditions at the particle surface by matching the
expansions of the fields in SVWF’s so that the residual of the surface fields is minimised
around the particle in a least squares sense. Consider Uα, Dα, an auxiliary system of
(possibly generalized) vector functions which are linearly independent and have the
component orthogonal to S identically null. Using a finite subset of these functions
with α ≤ αMax, (with αMax ≥ νMax) and the boundary conditions, we can define the
matrix equation relating the incident fields , F0, to the internal and scattered fields[

< Uα|F i
ν > < Uα|F s

ν >
< Dα|F i

ν > < Dα|F s
ν >

] [
ci
ν

−cs
ν

]
=
[

< Uα|F0 >
< Dα|F0 >

]
, (6)

where we use the notation < a|b >=
∫

S
a · bds to indicate the surface integral of

the scalar product of complex vector functions over the surface S. Note that we can
find a least-square solution for the expansion coefficients ci

ν and cs
ν even when the

left hand side matrix in Eq. 6 is rectangular by calculating, through Singular Value
Decomposition (SVD) [13], the Moore-Penrose pseudo-inverse, a generalised matrix
inverse defined for non-square complex matrices. By solving Eq. 6, we can find an
approximate surface Green function,

GνMax,αMax = [F i
νIi,−F s

ν Is]L−1
να

[
Uα

Dα

]
, (7)

where Ii is 1 inside the particle and 0 elsewhere, Is is 0 inside the particle and 1
elsewhere, and L−1 is the pseudo-inverse of the left hand side matrix in Eq.(6). For
fixed νMax, the value of αMax at which one reaches convergence depends on the choice
of Uα, Dα. It can be shown that by increasing νMax and αMax, GνMax,αMax converges
to G [11]. The algorithm requires O(α3

Max) operations, but uniquely determines the
fields at all points in space. Furthermore, once GνMax,αMax has been determined, it
need not be evaluated for each individual input field, offering a computational saving
over methods such as the Finite Difference Time Domain technique.

In this paper we take advantage of the fact that, for axisymmetric scatterers,
the azimuthal modes decouple and we can thus project on each harmonic exp (imφ)
and solve each azimuthal mode individually. We consider particles whose surface
can be parametrized by the angles θ and φ and use generalised projection functions
|Uα >= [uα, 0]T , |Dα >= [0, uα]T with

uα ◦ S ≡
∫

δ(θ − θp)
e−imφ

2π
[n̂(θ)× φ̂(θ, φ)] · [n̂(θ)× S(θ, φ)]dθdφ

=
1
2π

∫
e−imφ[n̂(θp)× φ̂(θp, φ)] · [n̂(θp)× S(θp, φ)]dφ, (8)
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for 1 ≤ α ≤ αMax and

uα ◦ S ≡
∫

δ(θ − θp)
e−imφ

2π
φ̂(θ, φ) · [n̂(θ)× S(θ, φ)]dθdφ

=
1
2π

∫
e−imφ[n̂r(θp)Sθ(θp, φ)− n̂θ(θp)Sr(θp, φ)]dφ, (9)

for αMax + 1 ≤ α ≤ 2αMax. In this work we choose α as an index for points on the
surface where the boundary conditions are matched. φ̂ is the unitary vector along φ
in spherical polar coordinates, δ(θp) is the Dirac delta at the point θp on the surface
of the particle and n̂(θp) × φ̂(θp, φ), φ̂(θ, φ) are tangent to S and orthonormal. This
choice of functions leads to the point matching system, where the matrix equations
must be overdetermined, i.e. the number of points must be larger than the number of
functions used in the expansion of the fields.

2.4. Discrete scattering cross sections and the residual field error

The Differential Scattering Cross Section, DSCS, is the far field angular variation in
electric field intensity, and is normally separated into two orthogonal polarisations, the
P-polarisation and S-polarisation. It is used in a standard test of the convergence of
scattering methods whereby the number of functions used to expand the scattered
field is increased to a point where the DSCS remains unchanged. The DSCS of
different methods are often compared in literature to ensure various methods produce
concurring results. It is given by

σs
P,S = lim

r→∞
|e−iksrrEs

θ,φ|2 (10)

We evaluate all scattering cross sections in the x−z plane (the plane shown in Fig. 1).
A much more useful measure of the accuracy of the method for near-field effects

is the relative error in the residual at any point, p, on the surface

δe =
|n̂(p)× (E0(p) + Es(p)−Ei(p))|2

|n̂(p)×E0(p)|2 . (11)

It can be shown that this error at the surface of the particle gives the upper bound error
at any point in space [14]. Relative fractional errors in the residual of no greater than
10−3 are usually deemed acceptable [15], although the magnitude varies with particle
composition. This error measure is an excellent method of determining whether the
boundary conditions are well matched and, therefore, if the solution is acceptable.

3. Results

By enforcing the boundary condition at the particle surface, we automatically find the
field solutions at any point in space and by calculating the residual of the surface fields
we find maximal error in the solution. Firstly, in Fig. (2), for spheres, we compare
our results with that of Mie theory using widely available routines based on theory
presented in [16]. The spheres are illuminated by a plane wave incident along the +z
axis (with respect to Fig. 1) that is polarised at 45◦ to the x− z plane. A polar angle
of 0◦ corresponds to the forward direction, while a polar angle of 180◦ corresponds
to the backward direction. The particle size is characterised by the Size Parameter
(SP = 2πa/λ). It can be seen that there is excellent agreement between the results.

In Figs.(3-6) we show several more examples of plots of particles which have been
solved using our method, in each case we plot the internal and scattered near field in
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Figure 2. A) Comparison between total DSCS’s from our method (data points)
and Mie theory (solid line) for a dielectric sphere, refractive index n=1.50, SP=10.
Our method was computed for 17 SVWF sources with an average error in the
residual of 6.2× 10−12. B) Similar comparison for a strongly absorbing dielectric
sphere, refractive index n=1.53+0.33i, SP=10. Our method was computed for 22
SVWF sources with an average error in the residual of 9.1× 10−11.

terms of electric field intensity plots (on a linear scale), the far field in terms of DSCS’s
(which we compare, where available, to the results of Doicu et al. [17]) and the residual
field error on the particle surface. The average relative error is designated by a dotted
line. In each case the incident field is the same as in our previous spherical examples.
Either the P or the S-polarisation DSCS is shown for each case so that the graphs do
not become too difficult to read, although agreement with both P and S-polarisations
to known results is excellent for all the cases where a comparison was available. For
each particle, as well as the Size Parameter, we specify the Aspect Ratio (AR = a/b).
For every particle considered below, the maximum relative fractional error in the
residual converges below 10−3, which is usually deemed acceptable [15], and in some
cases is significantly below this value.

In Fig. 3 we see a dielectric ellipsoid which produces a very localised, intense beam
on the shadow side of the particle which is characteristic of a nanojet. In Fig. 4 a
dielectric rounded cylinder is shown. Internal structure within the particle can clearly
be seen, which is similar in nature to whispering gallery modes observed dielectric
spheres [18]. In Fig. 5 we show a dielectric cylinder. Both internal structure and jet
like behavior can clearly be seen. Note the ability of the method to handle surfaces
with sharp edges, where the boundary conditions Eqs.(2-3) do not formally apply at
the edges and the system of SVWF’s used to expand the fields is not complete. The
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Figure 3. Dielectric ellipsoid, refractive index, n=1.59, SP=13.1, AR=4
computed for 27 SVWF sources. A) Near field intensity plot showing an intense
beam on shadow side of particle, with a full width at half maximum of 0.84λ,
characteristic of a nanojet. B) DSCS comparison, P-polarisation, solid line results
from Doicu et al., data points calculated via our method C) Error in residual;
maximum=2.7× 10−9, average=2.4× 10−10.

method also copes very well with metallic particles, a gold ellipsoid is shown in Fig. 6.
No special approximations are made for the boundary of the gold particle; namely, it
is not assumed to be a perfect conductor and the internal field is not set to zero. The
boundary conditions produce finite fields within the particle which rapidly attenuate
as expected since the skin depth is << λ. The ability of the method to find internal
fields in metallic particles makes it an exciting approach in the study of plasmonics.

4. Summary

We have shown that it is possible to calculate both the near and far field properties,
as well as the internal field of dielectric and metallic axisymmetric nanostructures via
surface Green functions. By enforcing boundary conditions at the particle surface,
we are automatically able to find the field and maximal error at any point in space,
including inside the particle. Also, by defining the SGF in terms of distributed lowest
order SVWF’s, we are able to characterise particles which are elongated from a sphere,
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Figure 4. Dielectric rounded cylinder, n=1.59, SP=20.8, AR=2.6 computed for
52 SVWF sources. A) Near field intensity plot. B) DSCS using our method, S-
polarisation. Results from literature are not available for comparison. C) Relative
error in residual; maximum=1.4× 10−4, average=1.8× 10−5.

a problem which rapidly produces an ill conditioned set of equations for localised
source methods. For each particle, we have shown that the error in the calculation
is sufficiently small to ensure accurate results. We have used our method to find
DSCS’s for the particles which match known results, where results for comparison are
available. We have also found, in the near field, internal field structure and nanojets -
two interesting phenomena studied widely in literature. The ability of this method to
accurately find internal fields in dielectric particles could prove extremely useful in the
study of nano-resonators. Furthermore, we are able to find the internal field inside
metallic particles, while still enforcing the boundary conditions to a high precision
without making approximations about the nature of this field. We believe that this
could make this method particularly useful in the field of plasmonics.
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