16 research outputs found

    How can we use the endocytosis pathways to design nanoparticle drug-delivery vehicles to target cancer cells over healthy cells?

    Full text link
    Targeted drug delivery in cancer typically focuses on maximising the endocytosis of drugs into the diseased cells. However, there has been less focus on exploiting the differences in the endocytosis pathways of cancer cells versus non-cancer cells. An understanding of the endocytosis pathways in both cancer and non-cancer cells allows for the design of nanoparticles to deliver drugs to cancer cells whilst restricting healthy cells from taking up anticancer drugs, thus efficiently killing the cancer cells. Herein we compare the differences in the endocytosis pathways of cancer and healthy cells. Second, we highlight the importance of the physicochemical properties of nanoparticles (size, shape, stiffness, and surface chemistry) on cellular uptake and how they can be adjusted to selectively target the dominated endocytosis pathway of cancer cells over healthy cells and to deliver anticancer drug to the target cells. The review generates new thought in the design of cancer-selective nanoparticles based on the endocytosis pathways

    Lethal Antibody Enhancement of Dengue Disease in Mice Is Prevented by Fc Modification

    Get PDF
    Immunity to one of the four dengue virus (DV) serotypes can increase disease severity in humans upon subsequent infection with another DV serotype. Serotype cross-reactive antibodies facilitate DV infection of myeloid cells in vitro by promoting virus entry via Fcγ receptors (FcγR), a process known as antibody-dependent enhancement (ADE). However, despite decades of investigation, no in vivo model for antibody enhancement of dengue disease severity has been described. Analogous to human infants who receive anti-DV antibodies by transplacental transfer and develop severe dengue disease during primary infection, we show here that passive administration of anti-DV antibodies is sufficient to enhance DV infection and disease in mice using both mouse-adapted and clinical DV isolates. Antibody-enhanced lethal disease featured many of the hallmarks of severe dengue disease in humans, including thrombocytopenia, vascular leakage, elevated serum cytokine levels, and increased systemic viral burden in serum and tissue phagocytes. Passive transfer of a high dose of serotype-specific antibodies eliminated viremia, but lower doses of these antibodies or cross-reactive polyclonal or monoclonal antibodies all enhanced disease in vivo even when antibody levels were neutralizing in vitro. In contrast, a genetically engineered antibody variant (E60-N297Q) that cannot bind FcγR exhibited prophylactic and therapeutic efficacy against ADE-induced lethal challenge. These observations provide insight into the pathogenesis of antibody-enhanced dengue disease and identify a novel strategy for the design of therapeutic antibodies against dengue

    A New Approach to Dengue Fatal Cases Diagnosis: NS1 Antigen Capture in Tissues

    Get PDF
    Dengue manifestations may vary from asymptomatic to potentially fatal complications. With an increasing number of Dengue Hemorrhagic fever (DHF) and fatal cases, the availability of new approaches useful for cases confirmation plays an important role for the disease surveillance. The diagnosis of fatal cases in frozen and fixed tissues from autopsies can be determined by techniques such as viral RT-PCR, in situ hybridization, viral proteins detection by immunohistochemistry and NS3 specific immunostaining. We aimed to assess for the first time the usefulness of NS1 capture tests as a diagnostic technique to demonstrate DENV antigens in human tissue specimens. The highest sensitivity was obtained by a rapid ICT which was also the most sensitive in liver, lung, kidney, brain, spleen and thymus. Despite a number of studies demonstrating the usefulness of DENV NS1 antigen detection by different ELISAs in plasma and/or sera of dengue patients, no research has been done previously to demonstrate NS1 presence in tissues of fatal dengue cases. Moreover, the application of NS1 kits to demonstrate the presence of DENV may provide a better understanding of viral tropism in fatal cases and may be useful for studies of pathogenesis in vivo and in experimental animals

    Electrochemical Nanoengineered Sensors in Infectious Disease Diagnosis

    No full text
    This chapter reports a short review on electrochemical nanoengineered biosensors in infectious disease diagnosis. Early and timely diagnosis of infectious diseases has tremendous medical and social significance which advocates the development of new diagnostic tools. In this chapter, we discussed various electrochemical sensors for detection and diagnosis of tropical or subtropical fevers particularly dengue fever and malaria parasite. We also addressed the several important aspects of biosensors, namely, selectivity, sensitivity, and interference, and also the effect of engineering the nanomaterials (0D, 1D, 2D) on these aspects. In detail, we discussed the various techniques to immobilize the biomolecules on working electrode (glassy carbon, gold electrode, flexible substrates). Further, we discussed the several miniaturized sensing platforms with integrated microfluidic channels which can ensure for development of sensors for point-of-care applications

    The complete genome sequence of Francisella tularensis, the causative agent of tularemia.

    No full text
    Francisella tularensis is one of the most infectious human pathogens known. In the past, both the former Soviet Union and the US had programs to develop weapons containing the bacterium. We report the complete genome sequence of a highly virulent isolate of F. tularensis (1,892,819 bp). The sequence uncovers previously uncharacterized genes encoding type IV pili, a surface polysaccharide and iron-acquisition systems. Several virulence-associated genes were located in a putative pathogenicity island, which was duplicated in the genome. More than 10% of the putative coding sequences contained insertion-deletion or substitution mutations and seemed to be deteriorating. The genome is rich in IS elements, including IS630 Tc-1 mariner family transposons, which are not expected in a prokaryote. We used a computational method for predicting metabolic pathways and found an unexpectedly high proportion of disrupted pathways, explaining the fastidious nutritional requirements of the bacterium. The loss of biosynthetic pathways indicates that F. tularensis is an obligate host-dependent bacterium in its natural life cycle. Our results have implications for our understanding of how highly virulent human pathogens evolve and will expedite strategies to combat them
    corecore