51 research outputs found

    Analyse de la qualité des signatures manuscrites en-ligne par la mesure d'entropie

    Get PDF
    Cette thĂšse s'inscrit dans le contexte de la vĂ©rification d'identitĂ© par la signature manuscrite en-ligne. Notre travail concerne plus particuliĂšrement la recherche de nouvelles mesures qui permettent de quantifier la qualitĂ© des signatures en-ligne et d'Ă©tablir des critĂšres automatiques de fiabilitĂ© des systĂšmes de vĂ©rification. Nous avons proposĂ© trois mesures de qualitĂ© faisant intervenir le concept d entropie. Nous avons proposĂ© une mesure de qualitĂ© au niveau de chaque personne, appelĂ©e Entropie personnelle , calculĂ©e sur un ensemble de signatures authentiques d une personne. L originalitĂ© de l approche rĂ©side dans le fait que l entropie de la signature est calculĂ©e en estimant les densitĂ©s de probabilitĂ© localement, sur des portions, par le biais d un ModĂšle de Markov CachĂ©. Nous montrons que notre mesure englobe les critĂšres habituels utilisĂ©s dans la littĂ©rature pour quantifier la qualitĂ© d une signature, Ă  savoir: la complexitĂ©, la variabilitĂ© et la lisibilitĂ©. Aussi, cette mesure permet de gĂ©nĂ©rer, par classification non supervisĂ©e, des catĂ©gories de personnes, Ă  la fois en termes de variabilitĂ© de la signature et de complexitĂ© du tracĂ©. En confrontant cette mesure aux performances de systĂšmes de vĂ©rification usuels sur chaque catĂ©gorie de personnes, nous avons trouvĂ© que les performances se dĂ©gradent de maniĂšre significative (d un facteur 2 au minimum) entre les personnes de la catĂ©gorie haute Entropie (signatures trĂšs variables et peu complexes) et celles de la catĂ©gorie basse Entropie (signatures les plus stables et les plus complexes). Nous avons ensuite proposĂ© une mesure de qualitĂ© basĂ©e sur l entropie relative (distance de Kullback-Leibler), dĂ©nommĂ©e Entropie Relative Personnelle permettant de quantifier la vulnĂ©rabilitĂ© d une personne aux attaques (bonnes imitations). Il s agit lĂ  d un concept original, trĂšs peu Ă©tudiĂ© dans la littĂ©rature. La vulnĂ©rabilitĂ© associĂ©e Ă  chaque personne est calculĂ©e comme Ă©tant la distance de Kullback-Leibler entre les distributions de probabilitĂ© locales estimĂ©es sur les signatures authentiques de la personne et celles estimĂ©es sur les imitations qui lui sont associĂ©es. Nous utilisons pour cela deux ModĂšles de Markov CachĂ©s, l'un est appris sur les signatures authentiques de la personne et l'autre sur les imitations associĂ©es Ă  cette personne. Plus la distance de Kullback-Leibler est faible, plus la personne est considĂ©rĂ©e comme vulnĂ©rable aux attaques. Cette mesure est plus appropriĂ©e Ă  l analyse des systĂšmes biomĂ©triques car elle englobe en plus des trois critĂšres habituels de la littĂ©rature, la vulnĂ©rabilitĂ© aux imitations. Enfin, nous avons proposĂ© une mesure de qualitĂ© pour les signatures imitĂ©es, ce qui est totalement nouveau dans la littĂ©rature. Cette mesure de qualitĂ© est une extension de l Entropie Personnelle adaptĂ©e au contexte des imitations: nous avons exploitĂ© l information statistique de la personne cible pour mesurer combien la signature imitĂ©e rĂ©alisĂ©e par un imposteur va coller Ă  la fonction de densitĂ© de probabilitĂ© associĂ©e Ă  la personne cible. Nous avons ainsi dĂ©fini la mesure de qualitĂ© des imitations comme Ă©tant la dissimilaritĂ© existant entre l'entropie associĂ©e Ă  la personne Ă  imiter et celle associĂ©e Ă  l'imitation. Elle permet lors de l Ă©valuation des systĂšmes de vĂ©rification de quantifier la qualitĂ© des imitations, et ainsi d apporter une information vis-Ă -vis de la rĂ©sistance des systĂšmes aux attaques. Nous avons aussi montrĂ© l intĂ©rĂȘt de notre mesure d Entropie Personnelle pour amĂ©liorer les performances des systĂšmes de vĂ©rification dans des applications rĂ©elles. Nous avons montrĂ© que la mesure d Entropie peut ĂȘtre utilisĂ©e pour : amĂ©liorer la procĂ©dure d enregistrement, quantifier la dĂ©gradation de la qualitĂ© des signatures due au changement de plateforme, sĂ©lectionner les meilleures signatures de rĂ©fĂ©rence, identifier les signatures aberrantes, et quantifier la pertinence de certains paramĂštres pour diminuer la variabilitĂ© temporelle.This thesis is focused on the quality assessment of online signatures and its application to online signature verification systems. Our work aims at introducing new quality measures quantifying the quality of online signatures and thus establishing automatic reliability criteria for verification systems. We proposed three quality measures involving the concept of entropy, widely used in Information Theory. We proposed a novel quality measure per person, called "Personal Entropy" calculated on a set of genuine signatures of such a person. The originality of the approach lies in the fact that the entropy of the genuine signature is computed locally, on portions of such a signature, based on local density estimation by a Hidden Markov Model. We show that our new measure includes the usual criteria of the literature, namely: signature complexity, signature variability and signature legibility. Moreover, this measure allows generating, by an unsupervised classification, 3 coherent writer categories in terms of signature variability and complexity. Confronting this measure to the performance of two widely used verification systems (HMM, DTW) on each Entropy-based category, we show that the performance degrade significantly (by a factor 2 at least) between persons of "high Entropy-based category", containing the most variable and the least complex signatures and those of "low Entropy-based category", containing the most stable and the most complex signatures. We then proposed a novel quality measure based on the concept of relative entropy (also called Kullback-Leibler distance), denoted Personal Relative Entropy for quantifying person's vulnerability to attacks (good forgeries). This is an original concept and few studies in the literature are dedicated to this issue. This new measure computes, for a given writer, the Kullback-Leibler distance between the local probability distributions of his/her genuine signatures and those of his/her skilled forgeries: the higher the distance, the better the writer is protected from attacks. We show that such a measure simultaneously incorporates in a single quantity the usual criteria proposed in the literature for writer categorization, namely signature complexity, signature variability, as our Personal Entropy, but also the vulnerability criterion to skilled forgeries. This measure is more appropriate to biometric systems, because it makes a good compromise between the resulting improvement of the FAR and the corresponding degradation of FRR. We also proposed a novel quality measure aiming at quantifying the quality of skilled forgeries, which is totally new in the literature. Such a measure is based on the extension of our former Personal Entropy measure to the framework of skilled forgeries: we exploit the statistical information of the target writer for measuring to what extent an impostor s hand-draw sticks to the target probability density function. In this framework, the quality of a skilled forgery is quantified as the dissimilarity existing between the target writer s own Personal Entropy and the entropy of the skilled forgery sample. Our experiments show that this measure allows an assessment of the quality of skilled forgeries of the main online signature databases available to the scientific community, and thus provides information about systems resistance to attacks. Finally, we also demonstrated the interest of using our Personal Entropy measure for improving performance of online signature verification systems in real applications. We show that Personal Entropy measure can be used to: improve the enrolment process, quantify the quality degradation of signatures due to the change of platforms, select the best reference signatures, identify the outlier signatures, and quantify the relevance of times functions parameters in the context of temporal variability.EVRY-INT (912282302) / SudocSudocFranceF

    Entwicklungsanalyse fĂŒr das Medium Print am Beispiel der BILD-Zeitung

    Get PDF
    nicht vorhandenIn recent years the degree of sophistication regarding news outlets’ distribution channels has grown exponentially, due to the advancement of current technologies. This bachelor thesis takes aim at these alterations in the media landscape, in order to analyze the economic and social impact on the print newspaper market. As a subject of my analysis I will utilize the Bild Zeitung and will attempt to highlight the evolution at the core of that segment. Subse-quently I will dissect future consumption potential of non digital media alongside its digital substitutional goods

    Well-being and -ageing with chronical disease: the BV2 project

    Get PDF
    International audienceThe BV2 project aims to propose a monitoring system for wellbeing but also well-aging working on the prevention, detection and monitoring using a System of the Systems (SoS) approach. The project partner already uses the IoT technologies and the BV2 platform will combine the different developed systems. The main originality of the project consist s in the development of a virtual platform by combining the existing system

    Multi-dimensional profiling of elderly at-risk for Alzheimer's disease in a differential framework

    Get PDF
    International audienceThe utility of EEG in Alzheimer’s disease (AD) research has been demonstrated over several decades in numerous studies. EEG markers have been employed successfully to investigate AD-related alterations in prodromal AD and AD dementia. Preclinical AD is a recent concept and a novel target for clinical research. This project tackles two issues: first, AD prediction at the preclinical sta ge, by exploiting the multimodal INSIGHT-preAD database, acquired at the PitiĂ©-SalpetriĂšre Hospital; second, an automatic AD diagnosis in a differential framework, by exploiting another large-scale EEG database, acquired at Charles-Foix Hospital. In this project, we will investigate AD predictors at preclinical stage, using EEG data of only subjective Memory Complainers in order to establish a cognitive profiling of elderly at-risk. We will also identify EEG markers for AD detection at early stages in a di fferential diagnosis context. The correlation between EEG markers and clinical biomarkers will be also assessed for a better characterization of the retrieved profiles and a better understanding on the severity of the cognitive disorder. The exploited larg e-scale complementary data offer the opportunity to investigate the full spectrum of the AD neuro-degeneration changes in the brain, using a big data approach and multimodal patient profiling based on resting-state EEG marker

    Analyse de la qualité des signatures manuscrites en-ligne par la mesure d'entropie

    No full text
    This thesis is focused on the quality assessment of online signatures and its application to online signature verification systems. Our work aims at introducing new quality measures quantifying the quality of online signatures and thus establishing automatic reliability criteria for verification systems. We proposed three quality measures involving the concept of entropy, widely used in Information Theory. We proposed a novel quality measure per person, called "Personal Entropy" calculated on a set of genuine signatures of such a person. The originality of the approach lies in the fact that the entropy of the genuine signature is computed locally, on portions of such a signature, based on local density estimation by a Hidden Markov Model. We show that our new measure includes the usual criteria of the literature, namely: signature complexity, signature variability and signature legibility. Moreover, this measure allows generating, by an unsupervised classification, 3 coherent writer categories in terms of signature variability and complexity. Confronting this measure to the performance of two widely used verification systems (HMM, DTW) on each Entropy-based category, we show that the performance degrade significantly (by a factor 2 at least) between persons of "high Entropy-based category", containing the most variable and the least complex signatures and those of "low Entropy-based category", containing the most stable and the most complex signatures. We then proposed a novel quality measure based on the concept of relative entropy (also called Kullback-Leibler distance), denoted « Personal Relative Entropy » for quantifying person's vulnerability to attacks (good forgeries). This is an original concept and few studies in the literature are dedicated to this issue. This new measure computes, for a given writer, the Kullback-Leibler distance between the local probability distributions of his/her genuine signatures and those of his/her skilled forgeries: the higher the distance, the better the writer is protected from attacks. We show that such a measure simultaneously incorporates in a single quantity the usual criteria proposed in the literature for writer categorization, namely signature complexity, signature variability, as our Personal Entropy, but also the vulnerability criterion to skilled forgeries. This measure is more appropriate to biometric systems, because it makes a good compromise between the resulting improvement of the FAR and the corresponding degradation of FRR. We also proposed a novel quality measure aiming at quantifying the quality of skilled forgeries, which is totally new in the literature. Such a measure is based on the extension of our former Personal Entropy measure to the framework of skilled forgeries: we exploit the statistical information of the target writer for measuring to what extent an impostor’s hand-draw sticks to the target probability density function. In this framework, the quality of a skilled forgery is quantified as the dissimilarity existing between the target writer’s own Personal Entropy and the entropy of the skilled forgery sample. Our experiments show that this measure allows an assessment of the quality of skilled forgeries of the main online signature databases available to the scientific community, and thus provides information about systems’ resistance to attacks. Finally, we also demonstrated the interest of using our Personal Entropy measure for improving performance of online signature verification systems in real applications. We show that Personal Entropy measure can be used to: improve the enrolment process, quantify the quality degradation of signatures due to the change of platforms, select the best reference signatures, identify the outlier signatures, and quantify the relevance of times functions parameters in the context of temporal variability.Cette thĂšse s'inscrit dans le contexte de la vĂ©rification d'identitĂ© par la signature manuscrite en-ligne. Notre travail concerne plus particuliĂšrement la recherche de nouvelles mesures qui permettent de quantifier la qualitĂ© des signatures en-ligne et d'Ă©tablir des critĂšres automatiques de fiabilitĂ© des systĂšmes de vĂ©rification. Nous avons proposĂ© trois mesures de qualitĂ© faisant intervenir le concept d’entropie. Nous avons proposĂ© une mesure de qualitĂ© au niveau de chaque personne, appelĂ©e «Entropie personnelle», calculĂ©e sur un ensemble de signatures authentiques d’une personne. L’originalitĂ© de l’approche rĂ©side dans le fait que l’entropie de la signature est calculĂ©e en estimant les densitĂ©s de probabilitĂ© localement, sur des portions, par le biais d’un ModĂšle de Markov CachĂ©. Nous montrons que notre mesure englobe les critĂšres habituels utilisĂ©s dans la littĂ©rature pour quantifier la qualitĂ© d’une signature, Ă  savoir: la complexitĂ©, la variabilitĂ© et la lisibilitĂ©. Aussi, cette mesure permet de gĂ©nĂ©rer, par classification non supervisĂ©e, des catĂ©gories de personnes, Ă  la fois en termes de variabilitĂ© de la signature et de complexitĂ© du tracĂ©. En confrontant cette mesure aux performances de systĂšmes de vĂ©rification usuels sur chaque catĂ©gorie de personnes, nous avons trouvĂ© que les performances se dĂ©gradent de maniĂšre significative (d’un facteur 2 au minimum) entre les personnes de la catĂ©gorie «haute Entropie» (signatures trĂšs variables et peu complexes) et celles de la catĂ©gorie «basse Entropie» (signatures les plus stables et les plus complexes). Nous avons ensuite proposĂ© une mesure de qualitĂ© basĂ©e sur l’entropie relative (distance de Kullback-Leibler), dĂ©nommĂ©e «Entropie Relative Personnelle» permettant de quantifier la vulnĂ©rabilitĂ© d’une personne aux attaques (bonnes imitations). Il s’agit lĂ  d’un concept original, trĂšs peu Ă©tudiĂ© dans la littĂ©rature. La vulnĂ©rabilitĂ© associĂ©e Ă  chaque personne est calculĂ©e comme Ă©tant la distance de Kullback-Leibler entre les distributions de probabilitĂ© locales estimĂ©es sur les signatures authentiques de la personne et celles estimĂ©es sur les imitations qui lui sont associĂ©es. Nous utilisons pour cela deux ModĂšles de Markov CachĂ©s, l'un est appris sur les signatures authentiques de la personne et l'autre sur les imitations associĂ©es Ă  cette personne. Plus la distance de Kullback-Leibler est faible, plus la personne est considĂ©rĂ©e comme vulnĂ©rable aux attaques. Cette mesure est plus appropriĂ©e Ă  l’analyse des systĂšmes biomĂ©triques car elle englobe en plus des trois critĂšres habituels de la littĂ©rature, la vulnĂ©rabilitĂ© aux imitations. Enfin, nous avons proposĂ© une mesure de qualitĂ© pour les signatures imitĂ©es, ce qui est totalement nouveau dans la littĂ©rature. Cette mesure de qualitĂ© est une extension de l’Entropie Personnelle adaptĂ©e au contexte des imitations: nous avons exploitĂ© l’information statistique de la personne cible pour mesurer combien la signature imitĂ©e rĂ©alisĂ©e par un imposteur va coller Ă  la fonction de densitĂ© de probabilitĂ© associĂ©e Ă  la personne cible. Nous avons ainsi dĂ©fini la mesure de qualitĂ© des imitations comme Ă©tant la dissimilaritĂ© existant entre l'entropie associĂ©e Ă  la personne Ă  imiter et celle associĂ©e Ă  l'imitation. Elle permet lors de l’évaluation des systĂšmes de vĂ©rification de quantifier la qualitĂ© des imitations, et ainsi d’apporter une information vis-Ă -vis de la rĂ©sistance des systĂšmes aux attaques. Nous avons aussi montrĂ© l’intĂ©rĂȘt de notre mesure d’Entropie Personnelle pour amĂ©liorer les performances des systĂšmes de vĂ©rification dans des applications rĂ©elles. Nous avons montrĂ© que la mesure d’Entropie peut ĂȘtre utilisĂ©e pour : amĂ©liorer la procĂ©dure d’enregistrement, quantifier la dĂ©gradation de la qualitĂ© des signatures due au changement de plateforme, sĂ©lectionner les meilleures signatures de rĂ©fĂ©rence, identifier les signatures aberrantes, et quantifier la pertinence de certains paramĂštres pour diminuer la variabilitĂ© temporelle

    Quality analysis of online signatures based on entropy measure

    No full text
    Cette thĂšse s'inscrit dans le contexte de la vĂ©rification d'identitĂ© par la signature manuscrite en-ligne. Notre travail concerne plus particuliĂšrement la recherche de nouvelles mesures qui permettent de quantifier la qualitĂ© des signatures en-ligne et d'Ă©tablir des critĂšres automatiques de fiabilitĂ© des systĂšmes de vĂ©rification. Nous avons proposĂ© trois mesures de qualitĂ© faisant intervenir le concept d’entropie. Nous avons proposĂ© une mesure de qualitĂ© au niveau de chaque personne, appelĂ©e «Entropie personnelle», calculĂ©e sur un ensemble de signatures authentiques d’une personne. L’originalitĂ© de l’approche rĂ©side dans le fait que l’entropie de la signature est calculĂ©e en estimant les densitĂ©s de probabilitĂ© localement, sur des portions, par le biais d’un ModĂšle de Markov CachĂ©. Nous montrons que notre mesure englobe les critĂšres habituels utilisĂ©s dans la littĂ©rature pour quantifier la qualitĂ© d’une signature, Ă  savoir: la complexitĂ©, la variabilitĂ© et la lisibilitĂ©. Aussi, cette mesure permet de gĂ©nĂ©rer, par classification non supervisĂ©e, des catĂ©gories de personnes, Ă  la fois en termes de variabilitĂ© de la signature et de complexitĂ© du tracĂ©. En confrontant cette mesure aux performances de systĂšmes de vĂ©rification usuels sur chaque catĂ©gorie de personnes, nous avons trouvĂ© que les performances se dĂ©gradent de maniĂšre significative (d’un facteur 2 au minimum) entre les personnes de la catĂ©gorie «haute Entropie» (signatures trĂšs variables et peu complexes) et celles de la catĂ©gorie «basse Entropie» (signatures les plus stables et les plus complexes). Nous avons ensuite proposĂ© une mesure de qualitĂ© basĂ©e sur l’entropie relative (distance de Kullback-Leibler), dĂ©nommĂ©e «Entropie Relative Personnelle» permettant de quantifier la vulnĂ©rabilitĂ© d’une personne aux attaques (bonnes imitations). Il s’agit lĂ  d’un concept original, trĂšs peu Ă©tudiĂ© dans la littĂ©rature. La vulnĂ©rabilitĂ© associĂ©e Ă  chaque personne est calculĂ©e comme Ă©tant la distance de Kullback-Leibler entre les distributions de probabilitĂ© locales estimĂ©es sur les signatures authentiques de la personne et celles estimĂ©es sur les imitations qui lui sont associĂ©es. Nous utilisons pour cela deux ModĂšles de Markov CachĂ©s, l'un est appris sur les signatures authentiques de la personne et l'autre sur les imitations associĂ©es Ă  cette personne. Plus la distance de Kullback-Leibler est faible, plus la personne est considĂ©rĂ©e comme vulnĂ©rable aux attaques. Cette mesure est plus appropriĂ©e Ă  l’analyse des systĂšmes biomĂ©triques car elle englobe en plus des trois critĂšres habituels de la littĂ©rature, la vulnĂ©rabilitĂ© aux imitations. Enfin, nous avons proposĂ© une mesure de qualitĂ© pour les signatures imitĂ©es, ce qui est totalement nouveau dans la littĂ©rature. Cette mesure de qualitĂ© est une extension de l’Entropie Personnelle adaptĂ©e au contexte des imitations: nous avons exploitĂ© l’information statistique de la personne cible pour mesurer combien la signature imitĂ©e rĂ©alisĂ©e par un imposteur va coller Ă  la fonction de densitĂ© de probabilitĂ© associĂ©e Ă  la personne cible. Nous avons ainsi dĂ©fini la mesure de qualitĂ© des imitations comme Ă©tant la dissimilaritĂ© existant entre l'entropie associĂ©e Ă  la personne Ă  imiter et celle associĂ©e Ă  l'imitation. Elle permet lors de l’évaluation des systĂšmes de vĂ©rification de quantifier la qualitĂ© des imitations, et ainsi d’apporter une information vis-Ă -vis de la rĂ©sistance des systĂšmes aux attaques. Nous avons aussi montrĂ© l’intĂ©rĂȘt de notre mesure d’Entropie Personnelle pour amĂ©liorer les performances des systĂšmes de vĂ©rification dans des applications rĂ©elles. Nous avons montrĂ© que la mesure d’Entropie peut ĂȘtre utilisĂ©e pour : amĂ©liorer la procĂ©dure d’enregistrement, quantifier la dĂ©gradation de la qualitĂ© des signatures due au changement de plateforme, sĂ©lectionner les meilleures signatures de rĂ©fĂ©rence, identifier les signatures aberrantes, et quantifier la pertinence de certains paramĂštres pour diminuer la variabilitĂ© temporelle.This thesis is focused on the quality assessment of online signatures and its application to online signature verification systems. Our work aims at introducing new quality measures quantifying the quality of online signatures and thus establishing automatic reliability criteria for verification systems. We proposed three quality measures involving the concept of entropy, widely used in Information Theory. We proposed a novel quality measure per person, called "Personal Entropy" calculated on a set of genuine signatures of such a person. The originality of the approach lies in the fact that the entropy of the genuine signature is computed locally, on portions of such a signature, based on local density estimation by a Hidden Markov Model. We show that our new measure includes the usual criteria of the literature, namely: signature complexity, signature variability and signature legibility. Moreover, this measure allows generating, by an unsupervised classification, 3 coherent writer categories in terms of signature variability and complexity. Confronting this measure to the performance of two widely used verification systems (HMM, DTW) on each Entropy-based category, we show that the performance degrade significantly (by a factor 2 at least) between persons of "high Entropy-based category", containing the most variable and the least complex signatures and those of "low Entropy-based category", containing the most stable and the most complex signatures. We then proposed a novel quality measure based on the concept of relative entropy (also called Kullback-Leibler distance), denoted « Personal Relative Entropy » for quantifying person's vulnerability to attacks (good forgeries). This is an original concept and few studies in the literature are dedicated to this issue. This new measure computes, for a given writer, the Kullback-Leibler distance between the local probability distributions of his/her genuine signatures and those of his/her skilled forgeries: the higher the distance, the better the writer is protected from attacks. We show that such a measure simultaneously incorporates in a single quantity the usual criteria proposed in the literature for writer categorization, namely signature complexity, signature variability, as our Personal Entropy, but also the vulnerability criterion to skilled forgeries. This measure is more appropriate to biometric systems, because it makes a good compromise between the resulting improvement of the FAR and the corresponding degradation of FRR. We also proposed a novel quality measure aiming at quantifying the quality of skilled forgeries, which is totally new in the literature. Such a measure is based on the extension of our former Personal Entropy measure to the framework of skilled forgeries: we exploit the statistical information of the target writer for measuring to what extent an impostor’s hand-draw sticks to the target probability density function. In this framework, the quality of a skilled forgery is quantified as the dissimilarity existing between the target writer’s own Personal Entropy and the entropy of the skilled forgery sample. Our experiments show that this measure allows an assessment of the quality of skilled forgeries of the main online signature databases available to the scientific community, and thus provides information about systems’ resistance to attacks. Finally, we also demonstrated the interest of using our Personal Entropy measure for improving performance of online signature verification systems in real applications. We show that Personal Entropy measure can be used to: improve the enrolment process, quantify the quality degradation of signatures due to the change of platforms, select the best reference signatures, identify the outlier signatures, and quantify the relevance of times functions parameters in the context of temporal variability

    Alzheimer's disease diagnosis using synchrony and disorder measures

    No full text
    International audienceThis study tackles the issue of Alzheimer's disease diagnosis with electroencephalography based on the quantification of the brain functional connectivity. In this work, we evaluated two measures of functional connectivity, namely Phase Synchrony largely used in the literature and Epoch-based entropy, to distinguish between Mild Alzheimer's disease patients (AD patients) and patients with Subjective Cognitive Impairment (SCI subjects). A Linear Discriminate Analysis was used to discriminate the two groups of subjects with a leave-one-out procedure. The obtained results indicated that the accuracy reached 98.33% with Epoch-based entropy and 52.33% with Phase synchrony in Ξ ban

    Alzheimer's disease diagnosis using synchrony and disorder measures

    No full text
    International audienceThis study tackles the issue of Alzheimer's disease diagnosis with electroencephalography based on the quantification of the brain functional connectivity. In this work, we evaluated two measures of functional connectivity, namely Phase Synchrony largely used in the literature and Epoch-based entropy, to distinguish between Mild Alzheimer's disease patients (AD patients) and patients with Subjective Cognitive Impairment (SCI subjects). A Linear Discriminate Analysis was used to discriminate the two groups of subjects with a leave-one-out procedure. The obtained results indicated that the accuracy reached 98.33% with Epoch-based entropy and 52.33% with Phase synchrony in Ξ ban

    Digitizing tablet

    No full text
    International audienceA digitizing tablet is a sensitive input device that converts a hand-drawn trajectory into a digital on-line form, which is a sequence..

    Comparing GMM and parzen in automatic signature recognition : a step backward or forward ?

    No full text
    International audienceThe use of Gaussian Mixture Models (GMM), adapted through the Expectation Minimization algorithm, is quite widespread in automatic verification (Biometric) tasks. Its choice is, at a first glance, founded on the good qualities of GMM models when aimed at approximating Probability Density Functions (PDF) of random variables. But biometric models for verification are frequently adapted from small sample sets of biometric signals, since in real applications subjects are not willing to accept long enrollment sessions. This well known constraint raises a problem of balance between model complexity and sample size. From this perspective, we show, through simple online signature verification experiments, that constrained GMM with fewer degrees of freedom, compared to GMM with full covariance matrices, provide better performances. Moreover, pushing this argument even further, we also show that a Parzen model (seen here as a over-constrained GMM) can be even better than usual GMM, in terms of Equal Error Ratio (EER)O uso de Gaussian Mixture Models (GMM), adaptados atraves do algoritmo iterativo Expectation Minimization , e comum em tarefas de verificacao automatica de individuos (Biometria). Sua escolha, a primeira vista, e bem fundamentada nas boas caracteristicas do GMM como ferramenta para modelar Funcoes Densidade de Probabilidade de variaveis aleatorias. Mas os modelos em biometria, nao raramente, sao adaptados/aprendidos a partir de pequenos conjuntos de amostras, pois em aplicacoes reais, os individuos podem nao aceitar longas sessoes de cadastros. Esta restricao, bem conhecida em biometria, pode gerar problemas de balaco entre complexidade de um modelo de probabilidade e a quantidade de dados disponiveis para o seu aprendizado. A partir desta perspectiva, atraves de experimentos simples de verificacao pela assinatura online, este trabalho aponta evidencias de que modelos com menos garus de liberdade que os GMM com matrizes de covariancia cheias, incluindo GMM regularizados, provem melhores resultados. Mais ainda, tambem e mostrado que um simples modelo Parzen (visto aqui como um GMM sobre-regularizado) pode ser melhor que os GMM usuais, em termos de Equal Error Ratio (EER)
    • 

    corecore