7 research outputs found

    Impact of measured and simulated tundra snowpack properties on heat transfer

    Get PDF
    Snowpack microstructure controls the transfer of heat to, as well as the temperature of, the underlying soils. In situ measurements of snow and soil properties from four field campaigns during two winters (March and November 2018, January and March 2019) were compared to an ensemble of CLM5.0 (Community Land Model) simulations, at Trail Valley Creek, Northwest Territories, Canada. Snow micropenetrometer profiles allowed for snowpack density and thermal conductivity to be derived at higher vertical resolution (1.25 mm) and a larger sample size (n=1050) compared to traditional snowpit observations (3 cm vertical resolution; n=115). Comparing measurements with simulations shows CLM overestimated snow thermal conductivity by a factor of 3, leading to a cold bias in wintertime soil temperatures (RMSE=5.8 ∘C). Two different approaches were taken to reduce this bias: alternative parameterisations of snow thermal conductivity and the application of a correction factor. All the evaluated parameterisations of snow thermal conductivity improved simulations of wintertime soil temperatures, with that of Sturm et al. (1997) having the greatest impact (RMSE=2.5 ∘C). The required correction factor is strongly related to snow depth () and thus differs between the two snow seasons, limiting the applicability of such an approach. Improving simulated snow properties and the corresponding heat flux is important, as wintertime soil temperatures are an important control on subnivean soil respiration and hence impact Arctic winter carbon fluxes and budgets

    Simulating net ecosystem exchange under seasonal snow cover at an Arctic tundra site

    Get PDF
    Estimates of winter (snow-covered non-growing season) CO2 fluxes across the Arctic region vary by a factor of 3.5, with considerable variation between measured and simulated fluxes. Measurements of snow properties, soil temperatures, and net ecosystem exchange (NEE) at Trail Valley Creek, NWT, Canada, allowed for the evaluation of simulated winter NEE in a tundra environment with the Community Land Model (CLM5.0). Default CLM5.0 parameterisations did not adequately simulate winter NEE in this tundra environment, with near-zero NEE (< 0.01 gCm^-2d^-1) simulated between November and mid-May. In contrast, measured NEE was broadly positive (indicating net CO2 release) from snow-cover onset until late April. Changes to the parameterisation of snow thermal conductivity, required to correct for a cold soil temperature bias, reduced the duration for which no NEE was simulated. Parameter sensitivity analysis revealed the critical role of the minimum soil moisture threshold of decomposition (Ψmin) in regulating winter soil respiration. The default value of this parameter (Ψmin) was too high, preventing simulation of soil respiration for the vast majority of the snow-covered season. In addition, the default rate of change of soil respiration with temperature (Q10) was too low, further contributing to poor model performance during winter. As Ψmin and Q10 had opposing effects on the magnitude of simulated winter soil respiration, larger negative values of Ψmin and larger positive values of Q10 are required to simulate wintertime NEE more adequately.Natural Environment Research CouncilPeer Reviewe

    Impact of measured and simulated tundra snowpack properties on heat transfer

    Get PDF
    Snowpack microstructure controls the transfer of heat to, as well as the temperature of, the underlying soils. In situ measurements of snow and soil properties from four field campaigns during two winters (March and November 2018, January and March 2019) were compared to an ensemble of CLM5.0 (Community Land Model) simulations, at Trail Valley Creek, Northwest Territories, Canada. Snow micropenetrometer profiles allowed for snowpack density and thermal conductivity to be derived at higher vertical resolution (1.25 mm) and a larger sample size (n = 1050) compared to traditional snowpit observations (3 cm vertical resolution; n = 115). Comparing measurements with simulations shows CLM overestimated snow thermal conductivity by a factor of 3, leading to a cold bias in wintertime soil temperatures (RMSE = 5.8 °C). Two different approaches were taken to reduce this bias: alternative parameterisations of snow thermal conductivity and the application of a correction factor. All the evaluated parameterisations of snow thermal conductivity improved simulations of wintertime soil temperatures, with that of Sturm et al. (1997) having the greatest impact (RMSE = 2.5 °C). The required correction factor is strongly related to snow depth (R2 = 0.77, RMSE = 0.066) and thus differs between the two snow seasons, limiting the applicability of such an approach. Improving simulated snow properties and the corresponding heat flux is important, as wintertime soil temperatures are an important control on subnivean soil respiration and hence impact Arctic winter carbon fluxes and budgets

    Simulating net ecosystem exchange under seasonal snow cover at an Arctic tundra site

    Get PDF
    Estimates of winter (snow-covered non-growing season) CO2 fluxes across the Arctic region vary by a factor of 3.5, with considerable variation between measured and simulated fluxes. Measurements of snow properties, soil temperatures, and net ecosystem exchange (NEE) at Trail Valley Creek, NWT, Canada, allowed for the evaluation of simulated winter NEE in a tundra environment with the Community Land Model (CLM5.0). Default CLM5.0 parameterisations did not adequately simulate winter NEE in this tundra environment, with near-zero NEE (< 0.01 ) simulated between November and mid-May. In contrast, measured NEE was broadly positive (indicating net CO2 release) from snow-cover onset until late April. Changes to the parameterisation of snow thermal conductivity, required to correct for a cold soil temperature bias, reduced the duration for which no NEE was simulated. Parameter sensitivity analysis revealed the critical role of the minimum soil moisture threshold of decomposition (Ψmin) in regulating winter soil respiration. The default value of this parameter (Ψmin) was too high, preventing simulation of soil respiration for the vast majority of the snow-covered season. In addition, the default rate of change of soil respiration with temperature (Q10) was too low, further contributing to poor model performance during winter. As Ψmin and Q10 had opposing effects on the magnitude of simulated winter soil respiration, larger negative values of Ψmin and larger positive values of Q10 are required to simulate wintertime NEE more adequately

    Arctic soil methane sink increases with drier conditions and higher ecosystem respiration

    Get PDF
    Arctic wetlands are known methane (CH4) emitters but recent studies suggest that the Arctic CH4 sink strength may be underestimated. Here we explore the capacity of well-drained Arctic soils to consume atmospheric CH4 using >40,000 hourly flux observations and spatially distributed flux measurements from 4 sites and 14 surface types. While consumption of atmospheric CH4 occurred at all sites at rates of 0.092 ± 0.011 mgCH4 m−2 h−1 (mean ± s.e.), CH4 uptake displayed distinct diel and seasonal patterns reflecting ecosystem respiration. Combining in situ flux data with laboratory investigations and a machine learning approach, we find biotic drivers to be highly important. Soil moisture outweighed temperature as an abiotic control and higher CH4 uptake was linked to increased availability of labile carbon. Our findings imply that soil drying and enhanced nutrient supply will promote CH4 uptake by Arctic soils, providing a negative feedback to global climate change

    A boreal forest model benchmarking dataset for North America: a case study with the Canadian Land Surface Scheme Including Biogeochemical Cycles (CLASSIC)

    No full text
    Climate change is rapidly altering composition, structure, and functioning of the boreal biome, across North America often broadly categorized into ecoregions. The resulting complex changes in different ecoregions present a challenge for efforts to accurately simulate carbon dioxide (CO _2 ) and energy exchanges between boreal forests and the atmosphere with terrestrial ecosystem models (TEMs). Eddy covariance measurements provide valuable information for evaluating the performance of TEMs and guiding their development. Here, we compiled a boreal forest model benchmarking dataset for North America by harmonizing eddy covariance and supporting measurements from eight black spruce ( Picea mariana )-dominated, mature forest stands. The eight forest stands, located in six boreal ecoregions of North America, differ in stand characteristics, disturbance history, climate, permafrost conditions and soil properties. By compiling various data streams, the benchmarking dataset comprises data to parameterize, force, and evaluate TEMs. Specifically, it includes half-hourly, gap-filled meteorological forcing data, ancillary data essential for model parameterization, and half-hourly, gap-filled or partitioned component flux data on CO _2 (net ecosystem production, gross primary production [GPP], and ecosystem respiration [ER]) and energy (latent [LE] and sensible heat [H]) and their daily aggregates screened based on half-hourly gap-filling quality criteria. We present a case study with the Canadian Land Surface Scheme Including Biogeochemical Cycles (CLASSIC) to: (1) demonstrate the utility of our dataset to benchmark TEMs and (2) provide guidance for model development and refinement. Model skill was evaluated using several statistical metrics and further examined through the flux responses to their environmental controls. Our results suggest that CLASSIC tended to overestimate GPP and ER among all stands. Model performance regarding the energy fluxes (i.e., LE and H) varied greatly among the stands and exhibited a moderate correlation with latitude. We identified strong relationships between simulated fluxes and their environmental controls except for H, thus highlighting current strengths and limitations of CLASSIC

    Arctic soil methane sink increases with drier conditions and higher ecosystem respiration

    No full text
    Arctic wetlands are known methane (CH4) emitters but recent studies suggest that the Arctic CH4 sink strength may be underestimated. Here we explore the capacity of well-drained Arctic soils to consume atmospheric CH4 using >40,000 hourly flux observations and spatially distributed flux measurements from 4 sites and 14 surface types. While consumption of atmospheric CH4 occurred at all sites at rates of 0.092 ± 0.011 mgCH4 m−2 h−1 (mean ± s.e.), CH4 uptake displayed distinct diel and seasonal patterns reflecting ecosystem respiration. Combining in situ flux data with laboratory investigations and a machine learning approach, we find biotic drivers to be highly important. Soil moisture outweighed temperature as an abiotic control and higher CH4 uptake was linked to increased availability of labile carbon. Our findings imply that soil drying and enhanced nutrient supply will promote CH4 uptake by Arctic soils, providing a negative feedback to global climate change.peerReviewe
    corecore