65 research outputs found

    Enhancing production of the malaria asexual blood-stage vaccine candidate PfRipr5 in insect cells by modulating expression vector and culture temperature

    Get PDF
    Despite the recent approval of the first malaria vaccine RTS,S/AS01, its efficacy in children and infants is still modest. Therefore, continued development of new, improved malaria vaccines, including asexual blood-stage vaccines such as the one herein targeted, is essential to reach desired levels of protection against disease and mortality. In this study, the insect cell-baculovirus expression vector system (IC-BEVS) was used to produce a malaria asexual blood-stage vaccine candidate based on PfRipr5 antigen and compared to traditional mammalian (HEK293) cell system. PfRipr5 could be expressed to higher levels in IC-BEVS, with higher protein purity and reactivity to a conformational anti-PfRipr monoclonal antibody than its mammalian counterpart. The performance of IC-BEVS was further improved by modulating the expression vector sequence and culture temperature. The addition to the expression vector of (i) one alanine (A) amino acid residue adjacent to the signal peptide cleavage site, and (ii) a glycine-serine linker (GGSGG) between the PfRipr5 sequence and the purification tag, resulted in up to 2.2-fold increase in the expression of secreted PfRipr5. In addition, lowering temperature from standard 27 °C to 22 °C at the time of infection improved PfRipr5 productivity by up to 1.7-fold. Noteworthy, a synergistic effect was attained by combining both optimization strategies, enabling to increase expression of extracellular PfRipr5 by up to 4-fold and process yield post-purification by 5.2-fold, while maintaining same degree of protein purity and reactivity. This work highlights the potential of insect cells to produce the PfRipr5 malaria vaccine candidate and the importance of optimizing the expression vector and culture conditions to boost expression of secreted proteins

    Epitope mapping and fine specificity of human T and B cell responses for novel candidate blood-stage malaria vaccine P27A

    Get PDF
    P27A is a novel synthetic malaria vaccine candidate derived from the blood stage Plasmodium falciparum protein Trophozoite Exported Protein 1 (TEX1/PFF0165c). In phase 1a/1b clinical trials in malaria unexposed adults in Switzerland and in malaria pre-exposed adults in Tanzania, P27A formulated with Alhydrogel and GLA-SE adjuvants induced antigen-specific antibodies and T-cell activity. The GLA-SE adjuvant induced significantly stronger humoral responses than the Alhydrogel adjuvant. Groups of pre-exposed and unexposed subjects received identical vaccine formulations, which supported the comparison of the cellular and humoral response to P27A in terms of fine specificity and affinity for populations and adjuvants. Globally, fine specificity of the T and B cell responses exhibited preferred recognized sequences and did not highlight major differences between adjuvants or populations. Affinity of anti-P27A antibodies was around 10−8 M in all groups. Pre-exposed volunteers presented anti-P27A with higher affinity than unexposed volunteers. Increasing the dose of GLA-SE from 2.5 to 5 μg in pre-exposed volunteers improved anti-P27A affinity and decreased the number of recognized epitopes. These results indicate a higher maturation of the humoral response in pre-exposed volunteers, particularly when immunized with P27A formulated with 5 μg GLA-SE

    Clinical development of placental malaria vaccines and immunoassays harmonization:a workshop report

    Get PDF
    International audiencePlacental malaria caused by Plasmodium falciparum infection constitutes a major health problem manifesting as severe disease and anaemia in the mother, impaired fetal development, low birth weight or spontaneous abortion. Prevention of placental malaria currently relies on two key strategies that are losing efficacy due to spread of resistance: long-lasting insecticide-treated nets and intermittent preventive treatment during pregnancy. A placental malaria vaccine would be an attractive, cost-effective complement to the existing control tools. Two placental malaria vaccine candidates are currently in Phase Ia/b clinical trials. During two workshops hosted by the European Vaccine Initiative, one in Paris in April 2014 and the other in Brussels in November 2014, the main actors in placental malaria vaccine research discussed the harmonization of clinical development plans and of the immunoassays with a goal to define standards that will allow comparative assessment of different placental malaria vaccine candidates. The recommendations of these workshops should guide researchers and clinicians in the further development of placental malaria vaccines

    The adjuvant GLA-SE promotes human Tfh cell expansion and emergence of public TCRβ clonotypes

    Get PDF
    The generation of protective humoral immunity after vaccination relies on the productive interaction between antigen-specific B cells and T follicular helper (Tfh) cells. Despite the central role of Tfh cells in vaccine responses, there is currently no validated way to enhance their differentiation in humans. From paired human lymph node and blood samples, we identify a population of circulating Tfh cells that are transcriptionally and clonally similar to germinal center Tfh cells. In a clinical trial of vaccine formulations, circulating Tfh cells were expanded in Tanzanian volunteers when an experimental malaria vaccine was adjuvanted in GLA-SE but not when formulated in Alum. The GLA-SE–formulated peptide was associated with an increase in the extrafollicular antibody response, long-lived antibody production, and the emergence of public TCRβ clonotypes in circulating Tfh cells. We demonstrate that altering vaccine adjuvants is a rational approach for enhancing Tfh cells in humans, thereby supporting the long-lived humoral immunity that is required for effective vaccines.</jats:p

    Un vaccin contre les Paramyxoviridae :chimère ou réalité ?

    No full text
    Doctorat en Sciencesinfo:eu-repo/semantics/nonPublishe

    Engineering of non-conventional yeasts for efficient synthesis of macromolecules: The methylotrophic genera

    No full text
    Methylotrophic yeasts, named after their ability to grow on methanol as the sole carbon source, have raised large interest as recombinant protein factories. In this review, we explain the basic mechanisms underlying this interest and describe the minimal requirements to transform the two genera recognized as methylotrophic, Pichia and Candida, into a powerful protein production tool. We present a comparison between this group of yeasts and the conventional yeasts used as expression system in view of productivity, level of secretion and quality of post-translational modifications. Selected examples of recombinant protein produced by methylotrophic yeast are also included. © 2002 Éditions scientifiques et médicales Elsevier SAS and Société française de biochimie et biologie moléculaire. All rights reserved.SCOPUS: cp.jinfo:eu-repo/semantics/publishe

    Specific identification of Bordetella pertussis by the polymerase chain reaction

    No full text
    SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Tissue factor: a mini-review.

    No full text
    Tissue factor (TF) is historically known as the trigger of the coagulation cascade. This integral membrane glycoprotein forms a ternary complex with factor VIIa (FVIIa) and zymogen factor (FX), which is then activated to factor Xa (FXa). The latter cleaves prothrombin into thrombin (FIIa), which in turn activates fibrinogen in fibrin monomers. What is less known is its additional non-haemostatic roles in inflammation, tumour growth and angiogenesis. This aspect will be developed here. TF, as a transmembrane protein, has a signalling effect requiring FVIIa. TF-FVIIa complex activates G protein-coupled receptor protease-activated receptor 2 (PAR-2) and therefore modulates various cellular processes, such as cell proliferation and survival, gene transcription and protein translation. In this review we will first highlight, using recent structural data, the 'potentially' active domain able to modulate the triggered intracellular response. We also will focus on the still emerging and promising results deciphering the diverse locations in which TF appears. We conclude with a description of an emerging and atypical use of tissue factor in platelet gel surgery for sinus augmentation.Journal ArticleResearch Support, Non-U.S. Gov'tReviewFLWINinfo:eu-repo/semantics/publishe
    corecore