28,918 research outputs found

    The singular perturbation of surface tension in Hele-Shaw flows

    Get PDF
    Morphological instabilities are common to pattern formation problems such as the non-equilibrium growth of crystals and directional solidification. Very small perturbations caused by noise originate convoluted interfacial patterns when surface tension is small. The generic mechanisms in the formation of these complex patterns are present in the simpler problem of a Hele-Shaw interface. Amid this extreme noise sensitivity, what is then the role played by small surface tension in the dynamic formation and selection of these patterns? What is the asymptotic behaviour of the interface in the limit as surface tension tends to zero? The ill-posedness of the zero-surface-tension problem and the singular nature of surface tension pose challenging difficulties in the investigation of these questions. Here, we design a novel numerical method that greatly reduces the impact of noise, and allows us to accurately capture and identify the singular contributions of extremely small surface tensions. The numerical method combines the use of a compact interface parametrization, a rescaling of the governing equations, and very high precision. Our numerical results demonstrate clearly that the zero-surface-tension limit is indeed singular. The impact of a surface-tension-induced complex singularity is revealed in detail. The singular effects of surface tension are first felt at the tip of the interface and subsequently spread around it. The numerical simulations also indicate that surface tension defines a length scale in the fingers developing in a later stage of the interface evolution

    The non-linear evolution of bispectrum from the scale-free N-body simulation

    Full text link
    We have accurately measured the bispectrum for four scale-free models of structure formation with the spectral index n=1n=1, 0, -1, and -2. The measurement is based on a new method that can effectively eliminate the alias and numerical artifacts, and reliably extend the analysis into the strongly non-linear regime. The work makes use of a set of state-of-the art N-body simulations that have significantly increased the resolution range compared with the previous studies on the subject. With these measured results, we demonstrated that the measured bispectrum depends on the shape and size of kk-triangle even in the strongly nonlinear regime. It increases with wavenumber and decreases with the spectral index. These results are in contrast with the hypothesis that the reduced bispectrum is a constant in the strongly non-linear regime. We also show that the fitting formula of Scoccimarro & Frieman (1999) does not describe our simulation results well (with a typical error about 40 percent). In the end, we present a new fitting formula for the reduced bispectrum that is valid for −2≤n≤0-2 \leq n \leq 0 with a typical error of 10 percent only.Comment: 33 pages, including 1 table, 14 figures, accepted by Ap

    FHL2 regulates hematopoietic stem cell functions under stress conditions.

    Get PDF
    FHL2, a member of the four and one half LIM domain protein family, is a critical transcriptional modulator. Here, we identify FHL2 as a critical regulator of hematopoietic stem cells (HSCs) that is essential for maintaining HSC self-renewal under regenerative stress. We find that Fhl2 loss has limited effects on hematopoiesis under homeostatic conditions. In contrast, Fhl2-null chimeric mice reconstituted with Fhl2-null bone marrow cells developed abnormal hematopoiesis with significantly reduced numbers of HSCs, hematopoietic progenitor cells (HPCs), red blood cells and platelets as well as hemoglobin levels. In addition, HSCs displayed a significantly reduced self-renewal capacity and were skewed toward myeloid lineage differentiation. We find that Fhl2 loss reduces both HSC quiescence and survival in response to regenerative stress, probably as a consequence of Fhl2-loss-mediated downregulation of cyclin-dependent kinase-inhibitors, including p21(Cip) and p27(Kip1). Interestingly, FHL2 is regulated under the control of a tissue-specific promoter in hematopoietic cells and it is downregulated by DNA hypermethylation in the leukemia cell line and primary leukemia cells. Furthermore, we find that downregulation of FHL2 frequently occurs in myelodysplastic syndrome and acute myeloid leukemia patients, raising a possibility that FHL2 downregulation has a role in the pathogenesis of myeloid malignancies

    Recent research and advances of material-based saturable absorber in mode-locked fiber laser

    Get PDF
    The incorporation of the material-based saturable absorber (SA) to generate mode-locked fiber laser (MLFL) has been extensively explored and demonstrated. However, the material-based SAs have some challenges in terms of optical damage threshold, design complexity, robustness, and stability due to several factors. Presently, several works have been demonstrated to address material-based SA fabrication issues. Therefore, this paper aims to comprehensively review the pros and cons of material-based SA in terms of material synthesis techniques, material characteristics, material-polymer composite, SA structure, and deposition techniques, along with current issues and challenges, and conclude with concrete recommendations. All the highlighted insights of this review will contribute to the increased efforts toward the development of the material-based SAs for the MLFL.Peer reviewe
    • …
    corecore