25 research outputs found

    A causal convolutional neural network for multi-subject motion modeling and generation

    Full text link
    Inspired by the success of WaveNet in multi-subject speech synthesis, we propose a novel neural network based on causal convolutions for multi-subject motion modeling and generation. The network can capture the intrinsic characteristics of the motion of different subjects, such as the influence of skeleton scale variation on motion style. Moreover, after fine-tuning the network using a small motion dataset for a novel skeleton that is not included in the training dataset, it is able to synthesize high-quality motions with a personalized style for the novel skeleton. The experimental results demonstrate that our network can model the intrinsic characteristics of motions well and can be applied to various motion modeling and synthesis tasks.Comment: This preprint has not undergone peer review (when applicable) or any post-submission improvements or corrections. The Version of Record of this article is published in Computational Visual Media, and is available online at https://doi.org/10.1007/s41095-022-0307-

    Nonreciprocal ground-state cooling of multiple mechanical resonators

    Full text link
    The simultaneous ground-state cooling of multiple degenerate or near-degenerate mechanical modes coupled to a common cavity-field mode has become an outstanding challenge in cavity optomechanics. This is because the dark modes formed by these mechanical modes decouple from the cavity mode and prevent extracting energy from the dark modes through the cooling channel of the cavity mode. Here we propose a universal and reliable dark-mode-breaking method to realize the simultaneous ground-state cooling of two degenerate or nondegenerate mechanical modes by introducing a phasedependent phonon-exchange interaction, which is used to form a loop-coupled configuration. We find an asymmetrical cooling performance for the two mechanical modes and expound this phenomenon based on the nonreciprocal energy transfer mechanism, which leads to the directional flow of phonons between the two mechanical modes. We also generalize this method to cool multiple mechanical modes. The physical mechanism in this cooling scheme has general validity and this method can be extended to break other dark-mode and dark-state effects in physics.Comment: 42 pages, 21 figure

    Pediatric myelin oligodendrocyte glycoprotein antibody-associated disease in southern China: analysis of 93 cases

    Get PDF
    ObjectiveTo study the clinical features of children diagnosed with myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) in southern China.MethodsClinical data of children diagnosed with MOGAD from April 2014 to September 2021 were analyzed.ResultsA total of 93 children (M/F=45/48; median onset age=6.0 y) with MOGAD were involved. Seizures or limb paralysis was the most common onset or course symptom, respectively. The most common lesion locations in brain MRI, orbital MRI, and spinal cord MRI were basal ganglia and subcortical white matter, the orbital segment of the optic nerve, and the cervical segment, respectively. ADEM (58.10%) was the most common clinical phenotype. The relapse rate was 24.7%. Compared with the patients without relapse, relapsed patients had a longer interval from onset to diagnosis (median: 19 days VS 20 days) and higher MOG antibody titer at onset (median: 1:32 VS 1:100) with longer positively persistent (median: 3 months VS 24 months). All patients received IVMP plus IVIG at the acute phase, and 96.8% of patients achieved remission after one to three courses of treatment. MMF, monthly IVIG, and maintaining a low dose of oral prednisone were used alone or in combination as maintenance immunotherapy for relapsed patients and effectively reduced relapse. It transpired 41.9% of patients had neurological sequelae, with movement disorder being the most common. Compared with patients without sequelae, patients with sequelae had higher MOG antibody titer at onset (median: 1:32 VS 1:100) with longer persistence (median: 3 months VS 6 months) and higher disease relapse rate (14.8% VS 38.5%).ConclusionsResults showed the following about pediatric MOGAD in southern China: the median onset age was 6.0 years, with no obvious sex distribution difference; seizure or limb paralysis, respectively, are the most common onset or course symptom; the lesions of basal ganglia, subcortical white matter, the orbital segment of the optic nerve, and cervical segment were commonly involved in the CNS MRI; ADEM was the most common clinical phenotype; most had a good response to immunotherapy; although the relapse rate was relatively high, MMF, monthly IVIG and a low dose of oral prednisone might effectively reduce relapse; neurological sequelae were common, and possibly associated with MOG antibody status and disease relapse

    Structure-Independent Conductance of Thiophene-Based Single-Stacking Junctions.

    Get PDF
    Intermolecular charge transport is crucial in π-conjugated materials but the experimental investigation remained challenging. Here, we show that charge transport through intermolecular and intramolecular paths in single-molecule and single-stacking thiophene junctions could be investigated using the mechanically controllable break junction (MCBJ) technique. We found that intermolecular charge transport ability through different single-stacking junctions is approximately independent of molecular structures, which contrasts with the strong length dependence of conductance in single-molecule junctions with the same building blocks, and the dominant charge transport path of molecules with two anchors transits from intramolecular to intermolecular paths when the conjugation pattern increased. The increase of conjugation further leads to higher binding probabilities due to the variation in binding energies supported by density functional theory (DFT) calculations. Our results demonstrate that intermolecular charge transport is not only the limiting step but also provides the efficient and dominate charge transport path at the single-molecule scale

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Physical Parametric Model of an Automotive Electrohydraulic Semiactive Damper

    No full text

    Stress Relaxation of a Sport Utility Vehicle Chassis Using a Dynamic Force Counteracting Approach

    No full text
    Structural failures in a Chinese sport utility vehicle (SUV) Land-wind X6 chassis were reported in recent years, thus, it is meaningful to conduct trouble-shooting and effective optimization to improve the chassis. Stress relaxation of the Land-wind X6 chassis using a novel dynamic force counteracting approach was carried out in this study. Finite Element Analysis (FEA) model of the chassis was firstly established and theoretical modal analysis was performed using the FEA model, experimental modal analysis was followed to validate the theoretical modal analysis and the FEA model. Further static and local stress analyses demonstrate that irrational designs between the longitudinal beams and the suspension components lead to inadequate stiffness and excessive stress concentrations which would cause fatigue and structural failure when the SUV chassis is subject to complex and severe excitations. A novel dynamic forces counteracting approach was introduced to optimize the chassis structure, FEA results show that excessive stress concentrations were obviously eliminated and the chassis stiffness, especially the torsional stiffness was greatly improved after optimization, followed industrial implementation also verifies that the FEA-based study and product optimization performed in this work are successful and significant

    Stress Relaxation of a Sport Utility Vehicle Chassis Using a Dynamic Force Counteracting Approach

    No full text
    Structural failures in a Chinese sport utility vehicle (SUV) Land-wind X6 chassis were reported in recent years, thus, it is meaningful to conduct trouble-shooting and effective optimization to improve the chassis. Stress relaxation of the Land-wind X6 chassis using a novel dynamic force counteracting approach was carried out in this study. Finite Element Analysis (FEA) model of the chassis was firstly established and theoretical modal analysis was performed using the FEA model, experimental modal analysis was followed to validate the theoretical modal analysis and the FEA model. Further static and local stress analyses demonstrate that irrational designs between the longitudinal beams and the suspension components lead to inadequate stiffness and excessive stress concentrations which would cause fatigue and structural failure when the SUV chassis is subject to complex and severe excitations. A novel dynamic forces counteracting approach was introduced to optimize the chassis structure, FEA results show that excessive stress concentrations were obviously eliminated and the chassis stiffness, especially the torsional stiffness was greatly improved after optimization, followed industrial implementation also verifies that the FEA-based study and product optimization performed in this work are successful and significant

    Non-locality sharing for a three-qubit system via multilateral sequential measurements

    Full text link
    Non-locality sharing for a three-qubit system via multilateral sequential measurements was deeply discussed. Different from 2-qubit case, it is shown that non-locality sharing between Alice1−Bob1−Charlie1\mathrm{Alice_{1}-Bob_{1}-Charlie_{1}} and Alice2−Bob2−Charlie2\mathrm{Alice_{2}-Bob_{2}-Charlie_{2}} in 3-qubit system can be observed, where two Mermin-Ardehali-Belinskii-Klyshko (MABK) inequalities can be violated simultaneously. What's more, a complete non-locality sharing with 8 MABK inequalities violations simultaneously can be also observed. Compared with 2-qubit case, the nonlocal sharing in a three qubit system shows more novel characteristics
    corecore