5,059 research outputs found

    Tapei on 35mm

    Get PDF

    Quantum Computing: From Bragg Reflections to Decoherence Estimates

    Get PDF
    We give an exposition of the principles of quantum computing (logic gates, exponential parallelism from polynomial hardware, fast quantum algorithms, quantum error correction, hardware requirements, and experimental milestones). A compact description of the quantum Fourier transform to find the period of a function-the key step in Shor\u27s factoring algorithm-illustrates how parallel state evolution along many classical computational paths produces fast algorithms by constructive interference similar to Bragg reflections in x-ray crystallography. On the hardware side, we present a new method to estimate critical time scales for the operation of a quantum computer. We derive a universal upper bound on the probability of a computation to fail due to decoherence (entanglement of the computer with the environment), as a function of time. The bound is parameter-free, requiring only the interaction between the computer and the environment, and the time-evolving state in the absence of any interaction. For a simple model we find that the bound performs well and decoherence is small when the energy of the computer state is large compared to the interaction energy. This supports a recent estimate of minimum energy requirements for quantum computation

    Coronal condensations caused by magnetic reconnection between solar coronal loops

    Full text link
    Employing Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) multi-wavelength images, we report the coronal condensation during the magnetic reconnection (MR) between a system of open and closed coronal loops. Higher-lying magnetically open structures, observed in AIA 171 A images above the solar limb, move downward and interact with the lower-lying closed loops, resulting in the formation of dips in the former. An X-type structure forms at the interface. The interacting loops reconnect and disappear. Two sets of newly-reconnected loops then form and recede from the MR region. During the MR process, bright emission appears sequentially in the AIA 131 A and 304 A channels repeatedly in the dips of higher-lying open structures. This indicates the cooling and condensation process of hotter plasma from ~0.9 MK down to ~0.6 MK, and then to ~0.05 MK, also supported by the light curves of the AIA 171 A, 131 A, and 304 A channels. The part of higher-lying open structures supporting the condensations participate in the successive MR. The condensations without support by underlying loops then rain back to the solar surface along the newly-reconnected loops. Our results suggest that the MR between coronal loops leads to the condensation of hotter coronal plasma and its downflows. MR thus plays an active role in the mass cycle of coronal plasma because it can initiate the catastrophic cooling and condensation. This underlines that the magnetic and thermal evolution has to be treated together and cannot be separated, even in the case of catastrophic cooling.Comment: 10 pages, 6 figure

    Reverse-Engineering the Robustness of Mammalian Lungs

    Get PDF

    GeV detection of HESS J0632+057

    Get PDF
    HESS J0632+057 is the only gamma-ray binary that has been detected at TeV energies, but not at GeV energies yet. Based on nearly nine years of Fermi Large Area Telescope (LAT) Pass 8 data, we report here on a deep search for the gamma-ray emission from HESS J0632+057 in the 0.1-300 GeV energy range. We find a previously unknown gamma-ray source, Fermi J0632.6+0548, spatially coincident with HESS J0632+057. The measured flux of Fermi J0632.6+0548 is consistent with the previous flux upper limit on HESS J0632+057 and shows variability that can be related to the HESS J0632+057 orbital phase. We propose that Fermi J0632.6+0548 is the GeV counterpart of HESS J0632+057. Considering the Very High Energy (VHE) spectrum of HESS J0632+057, a possible spectral turnover above 10 GeV may exist in Fermi J0632.6+0548, as appears to be common in other established gamma-ray binaries.Comment: 17 pages, 4 figures, 1 table; Accepted for publication in Ap

    Nonlocal memory assisted entanglement distribution in optical fibers

    Full text link
    Successful implementation of several quantum information and communication protocols require distributing entangled pairs of quantum bits in reliable manner. While there exists a substantial amount of recent theoretical and experimental activities dealing with non-Markovian quantum dynamics, experimental application and verification of the usefulness of memory-effects for quantum information tasks is still missing. We combine these two aspects and show experimentally that a recently introduced concept of nonlocal memory effects allows to protect and distribute polarization entangled pairs of photons in efficient manner within polarization-maintaining (PM) optical fibers. The introduced scheme is based on correlating the environments, i.e. frequencies of the polarization entangled photons, before their physical distribution. When comparing to the case without nonlocal memory effects, we demonstrate at least 12-fold improvement in the channel, or fiber length, for preserving the highly-entangled initial polarization states of photons against dephasing
    • …
    corecore