16 research outputs found

    CPT1a gene expression reverses the inflammatory and anti-phagocytic effect of 7-ketocholesterol in RAW264.7 macrophages

    Get PDF
    Background: macrophage are specialized cells that contributes to the removal of detrimental contents via phagocytosis. Lipid accumulation in macrophages, whether from phagocytosis of dying cells or from circulating oxidized low-density lipoproteins, alters macrophage biology and functionality. It is known that carnitine palmitoyl transferase 1-a (CPT1a) gene encodes an enzyme involved in fatty acid oxidation and, therefore, lipid content. However, the potential of CPT1a to activate macrophage phagocytic function have not been elucidated. Methods: using a murine macrophage cell line, RAW264.7, we determine if intracellular accumulation of 7-ketocholesterol (7-KC) modulates macrophage phagocytic function through CPT1a gene expression. In addition, the effects of CPT1a genetic modification on macrophage phenotype and phagocytosis has been studied. Results: our results revealed that CPT1a gene expression decreased by the accumulation of 7-KC at the higher dose of 7-KC. This was concomitant with an impair ability to phagocytize bioparticles and an inflammatory phenotype. GW3965 treatment, which have shown to facilitate the efflux of cholesterol, eliminated the intracellular lipid droplets of 7-KC-laden macrophages, increased the gene expression of CPT1a, diminished the gene expression of the inflammatory marker iNOS and restored macrophage phagocytosis. Furthermore, CPT1a Knockdown per se was detrimental for macrophage phagocytosis whereas transcriptional activation of CPT1a heightened the uptake of bioparticles. Conclusions: altogether, our findings indicate that downregulation of CPT1a by lipid content modulates macrophage phagocytosis and inflammatory phenotype

    Macrophage-derived Lipocalin-2 contributes to ischemic resistance mechanisms by protecting from renal injury

    Get PDF
    Renal ischemia-reperfusion injury triggers an inflammatory response associated to infiltrating macrophages which determines the further outcome of disease. Brown Norway rats are known to show endogenous resistance to ischemia-induced renal damage. By contrast, Sprague Dawley rats exhibit a higher susceptibility to ischemic injury. In order to ascertain cytoprotective mechanisms, we focused on the implication of lipocalin-2 protein in main resistance mechanisms in renal ischemia/reperfusion injury by using adoptive macrophage administration, genetically modified ex vivo either to overexpress or to knockdown lipocalin-2. In vitro experiments with bone marrow-derived macrophages both from Brown Norway rats and from Sprague Dawley rats under hypoxic conditions showed endogenous differences regarding cytokine and lipocalin-2 expression profile in the two strains. Most interestingly, we observed that macrophages of the resistant strain express significantly more lipocalin-2. In vivo studies showed that tubular epithelial cell apoptosis and renal injury significantly increased and reparative markers decreased in Brown Norway rats after injection of lipocalin-2-knockdown macrophages, while the administration of lipocalin-2-overexpressing cells significantly decreased Sprague Dawley susceptibility. These data point to a crucial role of macrophage-derived lipocalin-2 in endogenous cytoprotective mechanisms. We conclude that expression of lipocalin-2 in tissue-infiltrating macrophages is pivotal for kidney-intrinsic cytoprotective pathways during ischemia reperfusion injury

    Macrophage overexpressing NGAL ameliorated kidney fibrosis in the UUO mice model

    Get PDF
    Background/Aims: Alternatively activated macrophages (AAM) have regenerative and anti-inflammatory characteristics. Here, we sought to evaluate whether AAM cell therapy reduces renal inflammation and fibrosis in the unilateral ureteral obstruction (UUO) mice model. Methods: We stabilized macrophages by adenoviral vector NGAL (Neutrophil gelatinase-associated lipocalin-2) and infused them into UUO mice. To ascertain whether macrophages were capable of reaching the obstructed kidney, macrophages were stained and detected by in vivo cell tracking. Results: We demonstrated that some infused macrophages reached the obstructed kidney and that infusion of macrophages overexpressing NGAL was associated with reduced kidney interstitial fibrosis and inflammation. This therapeutic effect was mainly associated with the phenotype and function preservation of the transferred macrophages isolated from the obstructed kidney Conclusions: Macrophage plasticity is a major hurdle for achieving macrophage therapy success in chronic nephropathies and could be overcome by transferring lipocalin-2

    Infusion of Phagocytic Macrophages Overexpressing CPT1a Ameliorates Kidney Fibrosis in the UUO Model

    Get PDF
    Phagocytosis is an inherent function of tissue macrophages for the removal of apoptotic cells and cellular debris during acute and chronic injury; however, the dynamics of this event during fibrosis development is unknown. We aim to prove that during the development of kidney fibrosis in the unilateral ureteral obstruction (UUO) model, there are some populations of macrophage with a reduced ability to phagocytose, and whether the infusion of a population of phagocytic macrophages could reduce fibrosis in the murine model UUO. For this purpose, we have identified the macrophage populations during the development of fibrosis and have characterized their phagocytic ability and their expression of CPT1a. Furthermore, we have evaluated the therapeutic effect of macrophages overexpressing CPT1a with high phagocytic skills. We evidenced that the macrophage population which exhibits high phagocytic ability (F4/80low-CD11b) in fibrotic animals decreases during the progression of fibrosis while the macrophage population with lower phagocytic ability (F4/80high-CD11b) in fibrotic conditions, conversely, increases and CPT1a macrophage cell therapy with a strengthening phagocytic ability is associated with a therapeutic effect on kidney fibrosis. We have developed a therapeutic approach to reduce fibrosis in the UUO model by enrichment of the kidney resident macrophage population with a higher proportion of exogenous phagocytic macrophages overexpressing CPT1a

    miRNA let-7e targeting MMP9 is involved in adipose-derived stem cell differentiation toward epithelia

    Get PDF
    miRNA let-7e is involved in stem cell differentiation, and metalloproteinases are among its potential target genes. We hypothesized that the inhibitory action of let-7e on regulation of MMP9 expression could represent a crucial mechanism during differentiation of adipose-derived stem cells (ASCs). ASCs were differentiated with all-trans retinoic acid (ATRA) to promote differentiation, and the effect of let-7 silencing during differentiation was tested. Results indicate that ASCs cultured with ATRA differentiated into cells of the epithelial lineage. We found that ASCs cultured with ATRA or transfected with miRNA let-7e expressed epithelial markers such as cytokeratin-18 and early renal organogenesis markers such as Pax2, Wt1, Wnt4 and megalin. Conversely, the specific knockdown of miRNA let-7e in ASCs significantly decreased the expression of these genes, indicating its vital role during the differentiation process. Using luciferase reporter assays, we also showed that MMP9 is a direct target of miRNA let-7e. Thus, our results suggest that miRNA let-7e acts as a matrix metalloproteinase-9 (MMP9) inhibitor and differentiation inducer in ASCs

    miRNA let-7e modulates the wnt pathway and early nephrogenic markers in mouse embryonic stem cell differentiation

    Get PDF
    This study indicates that embryonic stem cells [ESCs] cultured with retinoic acid and activin A significantly upregulate the miRNA let-7e. This specific miRNA modulates the Wnt pathway and the expression of early nephrogenic markers under these differentiation conditions. The differentiation markers WT1, Pax2 and Wnt4 were downregulated when miRNA let-7e was silenced, thus indicating the role of miRNA let-7e in the differentiation process. PKCβ, GSK3β phosphorylation (GSK3β(P)) and β-catenin expression was reduced in differentiated cells and reversed by miRNA let-7e silencing. Addition of a PKCβ inhibitor to the miRNA let-7e silenced cells abolished let-7e-derived effects in differentiation markers, and reversed the increase in GSK3β(P) and β-catenin, thus indicating that miRNA let-7e is involved in differentiation via the modulation of GSK3β phosphorylation and β-catenin production

    The relevance of the UPS in the fatty liver graft preservation: a new approach for IGL-1 and HTK solutions

    Get PDF
    The 26S proteasome is the central proteolytic machinery of the ubiquitin proteasome system (UPS), which is involved in the degradation of ubiquitinated protein substrates. Recently, UPS inhibition has been shown to be a key factor in fatty liver graft preservation during organ cold storage using University of Wisconsin solution (UW) and Institute Georges Lopez (IGL-1) solutions. However, the merits of IGL-1 and histidine-tryptophan-ketoglutarate (HTK) solutions for fatty liver preservation have not been compared. Fatty liver grafts from obese Zücker rats were preserved for 24 h at 4 °C. Aspartate aminotransferase and alanine aminotransferase (AST/ALT), glutamate dehydrogenase (GLDH), ATP, adenosine monophosphate protein kinase (AMPK), e-NOS, proteasome activity and liver polyubiquitinated proteins were determined. IGL-1 solution prevented ATP breakdown during cold-storage preservation of steatotic livers to a greater extent than HTK solution. There were concomitant increases in AMPK activation, e-NOS (endothelial NOS (NO synthase)) expression and UPS inhibition. UPS activity is closely related to the composition of the solution used to preserve the organ. IGL-1 solution provided significantly better protection against ischemia-reperfusion for cold-stored fatty liver grafts than HTK solution. The effect is exerted through the activation of the protective AMPK signaling pathway, an increase in e-NOS expression and a dysregulation of the UPS

    Cytoprotective Mechanisms in Fatty Liver Preservation against Cold Ischemia Injury: A Comparison between IGL-1 and HTK

    Get PDF
    Institute Goeorges Lopez 1 (IGL-1) and Histidine-Tryptophan-Ketoglutarate (HTK) preservation solutions are regularly used in clinical for liver transplantation besides University of Wisconsin (UW) solution and Celsior. Several clinical trials and experimental works have been carried out comparing all the solutions, however the comparative IGL-1 and HTK appraisals are poor; especially when they deal with the underlying protection mechanisms of the fatty liver graft during cold storage. Fatty livers from male obese Zücker rats were conserved for 24 h at 4 °C in IGL-1 or HTK preservation solutions. After organ recovery and rinsing of fatty liver grafts with Ringer Lactate solution, we measured the changes in mechanistic target of rapamycin (mTOR) signaling activation, liver autophagy markers (Beclin-1, Beclin-2, LC3B and ATG7) and apoptotic markers (caspase 3, caspase 9 and TUNEL). These determinations were correlated with the prevention of liver injury (aspartate and alanine aminostransferase (AST/ALT), histology) and mitochondrial damage (glutamate dehydrogenase (GLDH) and confocal microscopy findings). Liver grafts preserved in IGL-1 solution showed a marked reduction on p-TOR/mTOR ratio when compared to HTK. This was concomitant with significant increased cyto-protective autophagy and prevention of liver apoptosis, including inflammatory cytokines such as HMGB1. Together, our results revealed that IGL-1 preservation solution better protected fatty liver grafts against cold ischemia damage than HTK solution. IGL-1 protection was associated with a reduced liver damage, higher induced autophagy and decreased apoptosis. All these effects would contribute to limit the subsequent extension of reperfusion injury after graft revascularization in liver transplantation procedures

    Macrophage-derived Lipocalin-2 contributes to ischemic resistance mechanisms by protecting from renal injury

    No full text
    Renal ischemia-reperfusion injury triggers an inflammatory response associated to infiltrating macrophages which determines the further outcome of disease. Brown Norway rats are known to show endogenous resistance to ischemia-induced renal damage. By contrast, Sprague Dawley rats exhibit a higher susceptibility to ischemic injury. In order to ascertain cytoprotective mechanisms, we focused on the implication of lipocalin-2 protein in main resistance mechanisms in renal ischemia/reperfusion injury by using adoptive macrophage administration, genetically modified ex vivo either to overexpress or to knockdown lipocalin-2. In vitro experiments with bone marrow-derived macrophages both from Brown Norway rats and from Sprague Dawley rats under hypoxic conditions showed endogenous differences regarding cytokine and lipocalin-2 expression profile in the two strains. Most interestingly, we observed that macrophages of the resistant strain express significantly more lipocalin-2. In vivo studies showed that tubular epithelial cell apoptosis and renal injury significantly increased and reparative markers decreased in Brown Norway rats after injection of lipocalin-2-knockdown macrophages, while the administration of lipocalin-2-overexpressing cells significantly decreased Sprague Dawley susceptibility. These data point to a crucial role of macrophage-derived lipocalin-2 in endogenous cytoprotective mechanisms. We conclude that expression of lipocalin-2 in tissue-infiltrating macrophages is pivotal for kidney-intrinsic cytoprotective pathways during ischemia reperfusion injury

    Macrophage overexpressing NGAL ameliorated kidney fibrosis in the UUO mice model

    No full text
    Background/Aims: Alternatively activated macrophages (AAM) have regenerative and anti-inflammatory characteristics. Here, we sought to evaluate whether AAM cell therapy reduces renal inflammation and fibrosis in the unilateral ureteral obstruction (UUO) mice model. Methods: We stabilized macrophages by adenoviral vector NGAL (Neutrophil gelatinase-associated lipocalin-2) and infused them into UUO mice. To ascertain whether macrophages were capable of reaching the obstructed kidney, macrophages were stained and detected by in vivo cell tracking. Results: We demonstrated that some infused macrophages reached the obstructed kidney and that infusion of macrophages overexpressing NGAL was associated with reduced kidney interstitial fibrosis and inflammation. This therapeutic effect was mainly associated with the phenotype and function preservation of the transferred macrophages isolated from the obstructed kidney Conclusions: Macrophage plasticity is a major hurdle for achieving macrophage therapy success in chronic nephropathies and could be overcome by transferring lipocalin-2
    corecore