128 research outputs found
Draft Genome Sequence of Pseudomonas sp. Strain LD120, Isolated from the Marine Alga Saccharina latissima
We report the draft genome sequence of Pseudomonas sp. strain LD120, which was isolated from a brown macroalga in the Baltic Sea. The genome of this marine Pseudomonas protegens subgroup bacterium harbors biosynthetic gene clusters for toxic metabolites typically produced by members of this Pseudomonas subgroup, including 2,4-diacetylphloroglucinol, pyoluteorin, and rhizoxin analogs.ISSN:2576-098
Improving pan-genome annotation using whole genome multiple alignment
Background: Rapid annotation and comparisons of genomes from multiple isolates (pan-genomes) is becoming
commonplace due to advances in sequencing technology. Genome annotations can contain inconsistencies and
errors that hinder comparative analysis even within a single species. Tools are needed to compare and improve
annotation quality across sets of closely related genomes.
Results: We introduce a new tool, Mugsy-Annotator, that identifies orthologs and evaluates annotation quality in
prokaryotic genomes using whole genome multiple alignment. Mugsy-Annotator identifies anomalies in annotated
gene structures, including inconsistently located translation initiation sites and disrupted genes due to draft
genome sequencing or pseudogenes. An evaluation of species pan-genomes using the tool indicates that such
anomalies are common, especially at translation initiation sites. Mugsy-Annotator reports alternate annotations that
improve consistency and are candidates for further review.
Conclusions: Whole genome multiple alignment can be used to efficiently identify orthologs and annotation
problem areas in a bacterial pan-genome. Comparisons of annotated gene structures within a species may show
more variation than is actually present in the genome, indicating errors in genome annotation. Our new tool
Mugsy-Annotator assists re-annotation efforts by highlighting edits that improve annotation consistency.https://doi.org/10.1186/1471-2105-12-27
Recommended from our members
Cost effective, experimentally robust differential-expression analysis for human/mammalian, pathogen and dual-species transcriptomics.
As sequencing read length has increased, researchers have quickly adopted longer reads for their experiments. Here, we examine 14 pathogen or host-pathogen differential gene expression data sets to assess whether using longer reads is warranted. A variety of data sets was used to assess what genomic attributes might affect the outcome of differential gene expression analysis including: gene density, operons, gene length, number of introns/exons and intron length. No genome attribute was found to influence the data in principal components analysis, hierarchical clustering with bootstrap support, or regression analyses of pairwise comparisons that were undertaken on the same reads, looking at all combinations of paired and unpaired reads trimmed to 36, 54, 72 and 101 bp. Read pairing had the greatest effect when there was little variation in the samples from different conditions or in their replicates (e.g. little differential gene expression). But overall, 54 and 72 bp reads were typically most similar. Given differences in costs and mapping percentages, we recommend 54 bp reads for organisms with no or few introns and 72 bp reads for all others. In a third of the data sets, read pairing had absolutely no effect, despite paired reads having twice as much data. Therefore, single-end reads seem robust for differential-expression analyses, but in eukaryotes paired-end reads are likely desired to analyse splice variants and should be preferred for data sets that are acquired with the intent to be community resources that might be used in secondary data analyses
Serendipitous discovery of Wolbachia genomes in multiple Drosophila species
BACKGROUND: The Trace Archive is a repository for the raw, unanalyzed data generated by large-scale genome sequencing projects. The existence of this data offers scientists the possibility of discovering additional genomic sequences beyond those originally sequenced. In particular, if the source DNA for a sequencing project came from a species that was colonized by another organism, then the project may yield substantial amounts of genomic DNA, including near-complete genomes, from the symbiotic or parasitic organism. RESULTS: By searching the publicly available repository of DNA sequencing trace data, we discovered three new species of the bacterial endosymbiont Wolbachia pipientis in three different species of fruit fly: Drosophila ananassae, D. simulans, and D. mojavensis. We extracted all sequences with partial matches to a previously sequenced Wolbachia strain and assembled those sequences using customized software. For one of the three new species, the data recovered were sufficient to produce an assembly that covers more than 95% of the genome; for a second species the data produce the equivalent of a 'light shotgun' sampling of the genome, covering an estimated 75-80% of the genome; and for the third species the data cover approximately 6-7% of the genome. CONCLUSIONS: The results of this study reveal an unexpected benefit of depositing raw data in a central genome sequence repository: new species can be discovered within this data. The differences between these three new Wolbachia genomes and the previously sequenced strain revealed numerous rearrangements and insertions within each lineage and hundreds of novel genes. The three new genomes, with annotation, have been deposited in GenBank
Correction: Serendipitous discovery of Wolbachia genomes in multiple Drosophila species
A correction to Serendipitous discovery of Wolbachia genomes in multiple Drosophila species by SL Salzberg, JC Dunning Hotopp, AL Delcher, M Pop, DR Smith, MB Eisen and WC Nelson. Genome Biology 2005, 6:R2
New criteria for selecting the origin of DNA replication in Wolbachia and closely related bacteria
© 2007 Ioannidis et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The definitive version was published in BMC Genomics 8 (2007): 182, doi:10.1186/1471-2164-8-182.Background: The annotated genomes of two closely related strains of the intracellular bacterium Wolbachia pipientis have been reported without the identifications of the putative origin of replication (ori). Identifying the ori of these bacteria and related alpha-Proteobacteria as well as their patterns of sequence evolution will aid studies of cell replication and cell density, as well as the potential genetic manipulation of these widespread intracellular bacteria.
Results: Using features that have been previously experimentally verified in the alpha-Proteobacterium Caulobacter crescentus, the origin of DNA replication (ori) regions were identified in silico for Wolbachia strains and eleven other related bacteria belonging to Ehrlichia, Anaplasma, and Rickettsia genera. These features include DnaA-, CtrA- and IHF-binding sites as well as the flanking genes in C. crescentus. The Wolbachia ori boundary genes were found to be hemE and COG1253 protein (CBS domain protein). Comparisons of the putative ori region among related Wolbachia strains showed higher conservation of bases within binding sites.
Conclusion: The sequences of the ori regions described here are only similar among closely related bacteria while fundamental characteristics like presence of DnaA and IHF binding sites as well as the boundary genes are more widely conserved. The relative paucity of CtrA binding sites in the ori regions, as well as the absence of key enzymes associated with DNA replication in the respective genomes, suggest that several of these obligate intracellular bacteria may have altered replication mechanisms. Based on these analyses, criteria are set forth for identifying the ori region in genome sequencing projects.PI, PS, SS, GT and KB acknowledge support of their work from intramural funding from the University of Ioannina. SB, JDH, LB and JW acknowledge support of their work from the U.S. National Science Foundation grant EF-0328363. SB also acknowledges the support from the NASA Astrobiology Institute (NNA04CC04A
Recommended from our members
Future-Proofing Your Microbiology Resource Announcements Genome Assembly for Reproducibility and Clarity.
Descriptions of resources, like the genome assemblies reported in Microbiology Resource Announcements, are often frozen at their time of publication, yet they will need to be interpreted in the midst of continually evolving technologies. It is therefore important to ensure that researchers accessing published resources have access to all of the information required to repeat, interpret, and extend these original analyses. Here, we provide a set of suggestions to help make certain that published resources remain useful and repeatable for the foreseeable future
Complete genome sequences of dengue virus type 2 strains from Kilifi, Kenya
Dengue infection remains poorly characterized in Africa and little is known regarding its associated viral genetic diversity. Here, we report dengue virus type 2 (DENV-2) sequence data from 10 clinical samples, including 5 complete genome sequences of the cosmopolitan genotype, obtained from febrile adults seeking outpatient care in coastal Kenya
Recommended from our members
Genomics of Loa loa, a Wolbachia-free filarial parasite of humans
Loa loa, the African eyeworm, is a major filarial pathogen of humans. Unlike most filariae, Loa loa does not contain the obligate intracellular Wolbachia endosymbiont. We describe the 91.4 Mb genome of Loa loa, and the genome of the related filarial parasite Wuchereria bancrofti, and predict 14,907 Loa loa genes based on microfilarial RNA sequencing. By comparing these genomes to that of another filarial parasite, Brugia malayi, and to several other nematode genomes, we demonstrate synteny among filariae but not with non-parasitic nematodes. The Loa loa genome encodes many immunologically relevant genes, as well as protein kinases targeted by drugs currently approved for humans. Despite lacking Wolbachia, Loa loa shows no new metabolic synthesis or transport capabilities compared to other filariae. These results suggest that the role played by Wolbachia in filarial biology is more subtle than previously thought and reveal marked differences between parasitic and non-parasitic nematodes
Recommended from our members
Best Practices for Successfully Writing and Publishing a Genome Announcement in Microbiology Resource Announcements
Microbiology Resource Announcements (MRA) provides peer-reviewed announcements of scientific resources for the microbial research community. We describe the best practices for writing an announcement that ensures that these publications are truly useful resources. Adhering to these best practices can lead to successful publication without the need for extensive revisions
- …