253 research outputs found

    The Welfare Caseload, Economics Growth and Welfare-to-Work Policies: An Analysis of Five Urban Areas

    Get PDF
    This paper uses quarterly data on AFDC (later TANF) recipients in five major urban areas to examine the relative importance of policy reform and economic conditions in explaining the dynamics of the welfare caseload and the employment experiences of welfare leavers. We find that changes in both welfare exits and entries played an important role in the caseload declines of the 1990s. Policy changes were primary in causing changes in these flows, with economic conditions of secondary importance. Although welfare reforms were accompanied by substantial increases in the employment of those leaving welfare, this appears to be largely the result of an increasingly tight labor market rather than the reforms

    Fabrication of Photonic Crystals with high refractive index

    Get PDF
    • Complete photonic bandgap • High contrast of refractive index (RI) • Polymer material with a low RI • Inorganic material with a higher RI, such as silicon, titania. • Fabrication of diamond-like PCs by MBIL, • Fabrication of high RI inorganic PCs via double templating, • Core-shell morphology of replica • Pinch-off problem • Development of combined level-surface to address pinch-off problem • Electrodeposition of titania 3D structure • Electrophoretic deposition of surface charged nanoparticle

    Planar photonic crystals infiltrated with nanoparticle/polymer composites

    Get PDF
    © 2007 American Institute of Physics. The electronic version of this article is the complete one and can be found at: http://dx.doi.org/10.1063/1.2817964DOI: 10.1063/1.2817964Infiltration of planar two-dimensional silicon photonic crystals with nanocomposites using a simple yet effective melt processing technique is presented. The nanocomposites that were developed by evenly dispersing functionalized TiO₂ nanoparticles into a photoconducting polymer were completely filled into photonic crystals with hole sizes ranging from 90 to 500 nm. The infiltrated devices show tuning of the photonic band gap that is controllable by the adjustment of the nanoparticle loading level. These results may be useful in the development of tunable photonic crystal based devices and hybrid light emitting diodes and solar cells

    Rapid induction of autoantibodies during ARDS and septic shock

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Little is known about the induction of humoral responses directed against human autoantigens during acute inflammation. We utilized a highly sensitive antibody profiling technology to study autoantibodies in patients with acute respiratory distress syndrome (ARDS) and severe sepsis, conditions characterized by intensive immune activation leading to multiple organ dysfunction.</p> <p>Methods</p> <p>Using Luciferase Immunoprecipitation Systems (LIPS), a cohort of control, ARDS and sepsis patients were tested for antibodies to a panel of autoantigens. Autoantibody titers greater than the mean plus 3 SD of the 24 control samples were used to identify seropositive samples. Available longitudinal samples from different seropositive ARDS and sepsis patient samples, starting from within the first two days after admission to the intensive care, were then analyzed for changes in autoantibody over time.</p> <p>Results</p> <p>From screening patient plasma, 57% of ARDS and 46% of septic patients without ARDS demonstrated at least one statistically significant elevated autoantibody compared to the controls. Frequent high titer antibodies were detected against a spectrum of autoantigens including potassium channel regulator, gastric ATPase, glutamic decarboxylase-65 and several cytokines. Analysis of serial samples revealed that several seropositive patients had low autoantibodies at early time points that often rose precipitously and peaked between days 7-14. Further, the use of therapeutic doses of corticosteroids did not diminish the rise in autoantibody titers. In some cases, the patient autoantibody titers remained elevated through the last serum sample collected.</p> <p>Conclusion</p> <p>The rapid induction of autoantibodies in ARDS and severe sepsis suggests that ongoing systemic inflammation and associated tissue destruction mediate the break in tolerance against these self proteins.</p

    BINGO: A code for the efficient computation of the scalar bi-spectrum

    Full text link
    We present a new and accurate Fortran code, the BI-spectra and Non-Gaussianity Operator (BINGO), for the efficient numerical computation of the scalar bi-spectrum and the non-Gaussianity parameter f_{NL} in single field inflationary models involving the canonical scalar field. The code can calculate all the different contributions to the bi-spectrum and the parameter f_{NL} for an arbitrary triangular configuration of the wavevectors. Focusing firstly on the equilateral limit, we illustrate the accuracy of BINGO by comparing the results from the code with the spectral dependence of the bi-spectrum expected in power law inflation. Then, considering an arbitrary triangular configuration, we contrast the numerical results with the analytical expression available in the slow roll limit, for, say, the case of the conventional quadratic potential. Considering a non-trivial scenario involving deviations from slow roll, we compare the results from the code with the analytical results that have recently been obtained in the case of the Starobinsky model in the equilateral limit. As an immediate application, we utilize BINGO to examine of the power of the non-Gaussianity parameter f_{NL} to discriminate between various inflationary models that admit departures from slow roll and lead to similar features in the scalar power spectrum. We close with a summary and discussion on the implications of the results we obtain.Comment: v1: 5 pages, 5 figures; v2: 35 pages, 11 figures, title changed, extensively revised; v3: 36 pages, 11 figures, to appear in JCAP. The BINGO code is available online at http://www.physics.iitm.ac.in/~sriram/bingo/bingo.htm

    Sigma-2 receptor ligands potentiate conventional chemotherapies and improve survival in models of pancreatic adenocarcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We have previously reported that the sigma-2 receptor is highly expressed in pancreas cancer. Furthermore, we have demonstrated that sigma-2 receptor specific ligands induce apoptosis in a dose-dependent fashion. Here, we examined whether sigma-2 receptor ligands potentiate conventional chemotherapies such as gemcitabine and paclitaxel.</p> <p>Methods</p> <p>Mouse (Panc-02) and human (CFPAC-1, Panc-1, AsPC-1) pancreas cancer cell lines were used in this study. Apoptosis was determined by FACS or immunohistochemical analysis after TUNEL and Caspase-3 staining. Combination therapy with the sigma-2 ligand SV119 and the conventional chemotherapies gemcitabine and paclitaxel was evaluated in an allogenic animal model of pancreas cancer.</p> <p>Results</p> <p>SV119, gemcitabine, and paclitaxel induced apoptosis in a dose-dependent fashion in all pancreas cancer cell lines tested. Combinations demonstrated increases in apoptosis. Mice were treated with SV119 (1 mg/day) which was administered in combination with paclitaxel (300 μg/day) over 7 days to mice with established tumors. A survival benefit was observed with combination therapy (p = 0.0002). Every other day treatment of SV119 (1 mg/day) in combination with weekly treatment of gemcitabine (1.5 mg/week) for 2 weeks also showed a survival benefit (p = 0.046). Animals tolerated the combination therapy and no gross toxicity was noted in serum biochemistry data or on necropsy.</p> <p>Conclusion</p> <p>SV119 augments tumoricidal activity of paclitaxel and gemcitabine without major side effects. These results highlight the potential utility of the sigma-2 ligand as an adjuvant treatment in pancreas cancer.</p

    The Complement Anaphylatoxin C5a Induces Apoptosis in Adrenomedullary Cells during Experimental Sepsis

    Get PDF
    Sepsis remains a poorly understood, enigmatic disease. One of the cascades crucially involved in its pathogenesis is the complement system. Especially the anaphylatoxin C5a has been shown to have numerous harmful effects during sepsis. We have investigated the impact of high levels of C5a on the adrenal medulla following cecal ligation and puncture (CLP)-induced sepsis in rats as well as the role of C5a on catecholamine production from pheochromocytoma-derived PC12 cells. There was significant apoptosis of adrenal medulla cells in rats 24 hrs after CLP, as assessed by the TUNEL technique. These effects could be reversed by dual-blockade of the C5a receptors, C5aR and C5L2. When rats were subjected to CLP, levels of C5a and norepinephrine were found to be antipodal as a function of time. PC12 cell production of norepinephrine and dopamine was significantly blunted following exposure to recombinant rat C5a in a time-dependent and dose-dependent manner. This impaired production could be related to C5a-induced initiation of apoptosis as defined by binding of Annexin V and Propidium Iodine to PC12 cells. Collectively, we describe a C5a-dependent induction of apoptotic events in cells of adrenal medulla in vivo and pheochromocytoma PC12 cells in vitro. These data suggest that experimental sepsis induces apoptosis of adrenomedullary cells, which are responsible for the bulk of endogenous catecholamines. Septic shock may be linked to these events. Since blockade of both C5a receptors virtually abolished adrenomedullary apoptosis in vivo, C5aR and C5L2 become promising targets with implications on future complement-blocking strategies in the clinical setting of sepsis
    • …
    corecore