117 research outputs found

    Slocum gliders provide accurate near real-time estimates of baleen whale presence from human-reviewed passive acoustic detection information

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Baumgartner, M. F., Bonnell, J., Corkeron, P. J., Van Parijs, S. M., Hotchkin, C., Hodges, B. A., Thornton, J. B., Mensi, B. L., & Bruner, S. M. Slocum gliders provide accurate near real-time estimates of baleen whale presence from human-reviewed passive acoustic detection information. Frontiers in Marine Science, 7, (2020):100, doi:10.3389/fmars.2020.00100.Mitigating the effects of human activities on marine mammals often depends on monitoring animal occurrence over long time scales, large spatial scales, and in real time. Passive acoustics, particularly from autonomous vehicles, is a promising approach to meeting this need. We have previously developed the capability to record, detect, classify, and transmit to shore information about the tonal sounds of baleen whales in near real time from long-endurance ocean gliders. We have recently developed a protocol by which a human analyst reviews this information to determine the presence of marine mammals, and the results of this review are automatically posted to a publicly accessible website, sent directly to interested parties via email or text, and made available to stakeholders via a number of public and private digital applications. We evaluated the performance of this system during two 3.75-month Slocum glider deployments in the southwestern Gulf of Maine during the spring seasons of 2015 and 2016. Near real-time detections of humpback, fin, sei, and North Atlantic right whales were compared to detections of these species from simultaneously recorded audio. Data from another 2016 glider deployment in the same area were also used to compare results between three different analysts to determine repeatability of results both among and within analysts. False detection (occurrence) rates on daily time scales were 0% for all species. Daily missed detection rates ranged from 17 to 24%. Agreement between two trained novice analysts and an experienced analyst was greater than 95% for fin, sei, and right whales, while agreement was 83–89% for humpback whales owing to the more subjective process for detecting this species. Our results indicate that the presence of baleen whales can be accurately determined using information about tonal sounds transmitted in near real-time from Slocum gliders. The system is being used operationally to monitor baleen whales in United States, Canadian, and Chilean waters, and has been particularly useful for monitoring the critically endangered North Atlantic right whale throughout the northwestern Atlantic Ocean.Funding for this project was provided by the Environmental Security Technology Certification Program of the U.S. Department of Defense and the U.S. Navy’s Living Marine Resources Program

    Near real-time detection of low-frequency baleen whale calls from an autonomous surface vehicle: implementation, evaluation, and remaining challenges

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Baumgartner, M. F., Ball, K., Partan, J., Pelletier, L., Bonnell, J., Hotchkin, C., Corkeron, P. J., & Van Parijs, S. M. Near real-time detection of low-frequency baleen whale calls from an autonomous surface vehicle: implementation, evaluation, and remaining challenges. Journal of the Acoustical Society of America, 149(5), (2021): 2950-2962, https://doi.org/10.1121/10.0004817.Mitigation of threats posed to marine mammals by human activities can be greatly improved with a better understanding of animal occurrence in real time. Recent advancements have enabled low-power passive acoustic systems to be integrated into long-endurance autonomous platforms for persistent near real-time monitoring of marine mammals via the sounds they produce. Here, the integration of a passive acoustic instrument capable of real-time detection and classification of low-frequency (LF) tonal sounds with a Liquid Robotics wave glider is reported. The goal of the integration was to enable monitoring of LF calls produced by baleen whales over periods of several months. Mechanical noises produced by the platform were significantly reduced by lubricating moving parts with polytetrafluoroethylene, incorporating rubber and springs to decelerate moving parts and shock mounting hydrophones. Flow noise was reduced with the development of a 21-element hydrophone array. Surface noise produced by breaking waves was not mitigated despite experimentation with baffles. Compared to a well-characterized moored passive acoustic monitoring buoy, the system greatly underestimated the occurrence of sei, fin, and North Atlantic right whales during a 37-d deployment, and therefore is not suitable in its current configuration for use in scientific or management applications for these species at this time.Funding for this project was provided by the Environmental Security Technology Certification Program of the U.S. Department of Defense and the U.S. Navy's Living Marine Resources Program

    Implementation of a Cardiogenic Shock Protocol and Data Review Process is Associated With Improved In-Hospital Survival

    Get PDF
    Background: Despite increasing use of mechanical circulatory support devices (MCS), cardiogenic shock (CS) mortality is persistently high, with worsening outcomes in later stages of CS. Delays in diagnosis and practice variation may contribute to in-hospital mortality. Methods: In June 2018, we devised and implemented a CS protocol at two hospitals from one health system in Portland, OR. The CS protocol was designed to promote early CS recognition, rapid notification of a multi-disciplinary specialty team lead by a heart failure cardiologist, invasive hemodynamic evaluation, and institution of MCS as appropriate. CS was defined by widely accepted clinical and hemodynamic criteria. Patient demographics, disease severity, process metrics, and clinical outcomes were prospectively collected and reviewed monthly by a multi-disciplinary CS task force. M&Ms were conducted routinely to identify improvement opportunities. The task force continually refined data collection, implemented protocol improvements, and educated providers and clinical staff in the emergency department, critical care, intermediate care, and cardiac telemetry units. Education centered on early recognition of CS, protocol for activation, and the time-sensitivity of CS outcomes. Results: From June 1, 2018 to October 1, 2019, identification of CS patients grew from five to 55 patients per month, with 311 total patients identified. Education initially emphasized CS identification and team activation, then expanded to definition of CS stages and hospital-specific protocols. Over 10 months, the CS mortality rate decreased by 30%. Ongoing optimization includes stratifying patients by primary discharge diagnosis, consistently documenting shock stages in the electronic medical record, and refining the transfer process from other hospitals. Conclusions: Implementation of a CS protocol with emphasis on early recognition, hemodynamic assessment, and implementation of MCS is associated with improved survival. Multi-disciplinary education and team engagement in data review are integral to continual process improvement. Character count: 1,818 Clinical Implications: A protocolized, multi-disciplinary approach can improve the outcome of CS

    Persistent near real-time passive acoustic monitoring for baleen whales from a moored buoy: System description and evaluation

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Baumgartner, M. F., Bonnell, J., Van Parijs, S. M., Corkeron, P. J., Hotchkin, C., Ball, K., Pelletier, L., Partan, J., Peters, D., Kemp, J., Pietro, J., Newhall, K., Stokes, A., Cole, T. V. N., Quintana, E., & Kraus, S. D. Persistent near real-time passive acoustic monitoring for baleen whales from a moored buoy: System description and evaluation. Methods in Ecology and Evolution, 10(9), (2019): 1476-1489, doi: 10.1111/2041-210X.13244.1. Managing interactions between human activities and marine mammals often relies on an understanding of the real‐time distribution or occurrence of animals. Visual surveys typically cannot provide persistent monitoring because of expense and weather limitations, and while passive acoustic recorders can monitor continuously, the data they collect are often not accessible until the recorder is recovered. 2. We have developed a moored passive acoustic monitoring system that provides near real‐time occurrence estimates for humpback, sei, fin and North Atlantic right whales from a single site for a year, and makes those occurrence estimates available via a publicly accessible website, email and text messages, a smartphone/tablet app and the U.S. Coast Guard's maritime domain awareness software. We evaluated this system using a buoy deployed off the coast of Massachusetts during 2015–2016 and redeployed again during 2016–2017. Near real‐time estimates of whale occurrence were compared to simultaneously collected archived audio as well as whale sightings collected near the buoy by aerial surveys. 3. False detection rates for right, humpback and sei whales were 0% and nearly 0% for fin whales, whereas missed detection rates at daily time scales were modest (12%–42%). Missed detections were significantly associated with low calling rates for all species. We observed strong associations between right whale visual sightings and near real‐time acoustic detections over a monitoring range 30–40 km and temporal scales of 24–48 hr, suggesting that silent animals were not especially problematic for estimating occurrence of right whales in the study area. There was no association between acoustic detections and visual sightings of humpback whales. 4. The moored buoy has been used to reduce the risk of ship strikes for right whales in a U.S. Coast Guard gunnery range, and can be applied to other mitigation applications.We thank Annamaria Izzi, Danielle Cholewiak and Genevieve Davis of the NOAA NEFSC for assistance in developing the analyst protocol. We are grateful to the NOAA NEFSC aerial survey observers (Leah Crowe, Pete Duley, Jen Gatzke, Allison Henry, Christin Khan and Karen Vale) and the NEAq aerial survey observers (Angela Bostwick, Marianna Hagbloom and Paul Nagelkirk). Danielle Cholewiak and three anonymous reviewers provided constructive criticism on earlier drafts of the manuscript. Funding for this project was provided by the NOAA NEFSC, NOAA Advanced Sampling Technology Work Group, Environmental Security Technology Certification Program of the U.S. Department of Defense, the U.S. Navy's Living Marine Resources Program, Massachusetts Clean Energy Center and the Bureau of Ocean Energy Management. Funding from NOAA was facilitated by the Cooperative Institute for the North Atlantic Region (CINAR) under Cooperative Agreement NA14OAR4320158

    Small

    Get PDF
    Bioenergetic deficits are known to be significant contributors to neurodegenerative diseases. Nevertheless, identifying safe and effective means to address intracellular bioenergetic deficits remains a significant challenge. This work provides mechanistic insights into the energy metabolism-regulating function of colloidal Au nanocrystals, referred to as CNM-Au8, that are synthesized electrochemically in the absence of surface-capping organic ligands. When neurons are subjected to excitotoxic stressors or toxic peptides, treatment of neurons with CNM-Au8 results in dose-dependent neuronal survival and neurite network preservation across multiple neuronal subtypes. CNM-Au8 efficiently catalyzes the conversion of an energetic cofactor, nicotinamide adenine dinucleotide hydride (NADH), into its oxidized counterpart (NAD ), which promotes bioenergy production by regulating the intracellular level of adenosine triphosphate. Detailed kinetic measurements reveal that CNM-Au8-catalyzed NADH oxidation obeys Michaelis-Menten kinetics and exhibits pH-dependent kinetic profiles. Photoexcited charge carriers and photothermal effect, which result from optical excitations and decay of the plasmonic electron oscillations or the interband electronic transitions in CNM-Au8, are further harnessed as unique leverages to modulate reaction kinetics. As exemplified by this work, Au nanocrystals with deliberately tailored structures and surfactant-free clean surfaces hold great promise for developing next-generation therapeutic agents for neurodegenerative diseases

    Presentation, diagnosis and clinical course of the spectrum of progressive-fibrosing interstitial lung diseases

    Get PDF
    Although these conditions are rare, a proportion of patients with interstitial lung diseases (ILDs) may develop a progressive-fibrosing phenotype. Progressive fibrosis is associated with worsening respiratory symptoms, lung function decline, limited response to immunomodulatory therapies, decreased quality of life and, potentially, early death. Idiopathic pulmonary fibrosis may be regarded as a model for other progressive-fibrosing ILDs. Here we focus on other ILDs that may present a progressive-fibrosing phenotype, namely idiopathic nonspecific interstitial pneumonia, unclassifiable idiopathic interstitial pneumonia, connective tissue disease-associated ILDs (e.g. rheumatoid arthritis-related ILD), fibrotic chronic hypersensitivity pneumonitis, fibrotic chronic sarcoidosis and ILDs related to other occupational exposures. Differential diagnosis of these ILDs can be challenging, and requires detailed consideration of clinical, radiological and histopathological features. Accurate and early diagnosis is crucial to ensure that patients are treated optimally
    corecore