73 research outputs found

    Correlations in hypernuclear matter

    Full text link
    We investigate short range correlations in nuclear and hypernuclear matter. Self-energies due to short range correlations and their influence on the nucleon and Λ\Lambda-hyperon spectral functions are described in an approach accounting for a realistic treatment of mean-field dynamics and a self-consistently derived quasi-particle interaction. Landau-Migdal theory is used to derived the short range interaction from a phenomenological Skyrme energy density functional, subtracting the long range pionic contributions to the nucleonic spectral functions. We discuss our results for different hyperon-baryon ratios to show the influence of strangeness on the correlations in hypernuclear matter.Comment: 7 pages, 5 figures, proceedings for HYP06 in Main

    Gamma-Ray Spectroscopy of Λ16^{16}_\LambdaO and Λ15^{15}_\LambdaN Hypernuclei via the 16^{16}O(K,π)(K^-, \pi^-) reaction

    Full text link
    he bound-state level structures of the Λ16^{16}_{\Lambda}O and Λ15^{15}_{\Lambda}N hypernuclei were studied by γ\gamma-ray spectroscopy using a germanium detector array (Hyperball) via the 16^{16}O (K,πγK^-, \pi^- \gamma) reaction. A level scheme for Λ16^{16}_{\Lambda}O was determined from the observation of three γ\gamma-ray transitions from the doublet of states (22^-,11^-) at 6.7\sim 6.7 MeV to the ground-state doublet (11^-,00^-). The Λ15^{15}_{\Lambda}N hypernuclei were produced via proton emission from unbound states in Λ16^{16}_{\Lambda}O . Three γ\gamma -rays were observed and the lifetime of the 1/2+;11/2^+;1 state in Λ15^{15}_{\Lambda}N was measured by the Doppler shift attenuation method. By comparing the experimental results with shell-model calculations, the spin-dependence of the ΛN\Lambda N interaction is discussed. In particular, the measured Λ16^{16}_{\Lambda}O ground-state doublet spacing of 26.4 ±\pm 1.6 ±\pm 0.5 keV determines a small but nonzero strength of the ΛN\Lambda N tensor interaction.Comment: 22 pages, 17 figure

    Strangeness nuclear physics: a critical review on selected topics

    Get PDF
    Selected topics in strangeness nuclear physics are critically reviewed. This includes production, structure and weak decay of Λ\Lambda--Hypernuclei, the Kˉ\bar K nuclear interaction and the possible existence of Kˉ\bar K bound states in nuclei. Perspectives for future studies on these issues are also outlined.Comment: 63 pages, 51 figures, accepted for publication on European Physical Journal

    Study of the Sigma-nucleus potential by the (pi^-,K^+) reaction on medium-to-heavy nuclear targets

    Full text link
    In order to study the Sigma-nucleus optical potential, we measured inclusive (pi^-,K^+) spectra on medium-to-heavy nuclear targets: CH_2, Si, Ni, In and Bi. The CH_2 target was used to calibrate the excitation energy scale by using the elementary process p + pi^- -> K^+ + Sigma^-, where the C spectrum was also extracted. The calibration was done with +-0.1 MeV precision. The angular distribution of the elementary cross section was measured, and agreed well with the previous bubble chamber data, but with better statistics, and the magnitudes of the cross sections of the measured inclusive (pi^-,K^+) spectra were also well calibrated. All of the inclusive spectra were found to be similar in shape at a region near to the Sigma^- binding energy threshold, showing a weak mass-number dependence on the magnitude of the cross section. The measured spectra were compared with a theoretical calculation performed within the framework of the Distorted Wave Impulse Approximation (DWIA). It has been demonstrated that a strongly repulsive \sig-nucleus potential with a non-zero size of the imaginary part is required to reproduce the shape of the measured spectra.Comment: 21 pages, 24 figures, submitted to PR

    First Results on 12Lambda-C production at DAPHNE

    Full text link
    Lambda-hypernuclei are produced and studied, with the FINUDA spectrometer, for the first time at an e+e- collider: DAPHNE, the Frascati phi-factory. The slow negative kaons from phi(1020) decay are stopped in thin (0.2 g/cm^2) nuclear targets, and Lambda-hypernuclei formation is detected by measuring the momentum of the outgoing pi^-. A preliminary analysis on 12Lambda-C shows an energy resolution of 1.29 MeV FWHM on the hypernuclear levels, the best obtained so far with magnetic spectrometers at hadron facilities. Capture rates for the ground state and the excited ones are reported, and compared with previous experiments.Comment: 15 pages, 5 figures. v2: one reference updated. Accepted for publication in Phys. Lett.
    corecore