15 research outputs found

    Nucleosome mobilization by ISW2 requires the concerted action of the ATPase and SLIDE domains

    Get PDF
    The ISWI family of ATP-dependent chromatin remodelers represses transcription by changing nucleosome positioning. The interactions with extranucleosomal DNA and the requirement of a minimal length of extranucleosomal DNA by ISWI mediate the spacing of nucleosomes. ISW2 from Saccharomyces cerevisiae, a member of the ISWI family, has a conserved domain called SLIDE (SANT-like ISWI domain), whose binding to extranucleosomal DNA ~19 bp from the edge of nucleosomes is required for efficiently pushing DNA into nucleosomes and maintaining the unidirectional movement of nucleosomes, as reported here. Loss of SLIDE binding does not perturb ATPase domain binding to the SHL2 site of nucleosomes or its initial movement of DNA inside of nucleosomes. ISW2 has therefore two distinct roles in mobilizing nucleosomes, with the ATPase domain translocating and moving DNA inside nucleosomes, and the SLIDE domain facilitating the entry of linker DNA into nucleosomes

    Disparity in the DNA translocase domains of SWI/SNF and ISW2

    Get PDF
    An ATP-dependent DNA translocase domain consisting of seven conserved motifs is a general feature of all ATP-dependent chromatin remodelers. While motifs on the ATPase domains of the yeast SWI/SNF and ISWI families of remodelers are highly conserved, the ATPase domains of these complexes appear not to be functionally interchangeable. We found one reason that may account for this is the ATPase domains interact differently with nucleosomes even though both associate with nucleosomal DNA 17–18 bp from the dyad axis. The cleft formed between the two lobes of the ISW2 ATPase domain is bound to nucleosomal DNA and Isw2 associates with the side of nucleosomal DNA away from the histone octamer. The ATPase domain of SWI/SNF binds to the same region of nucleosomal DNA, but is bound outside of the cleft region. The catalytic subunit of SWI/SNF also appears to intercalate between the DNA gyre and histone octamer. The altered interactions of SWI/SNF with DNA are specific to nucleosomes and do not occur with free DNA. These differences are likely mediated through interactions with the histone surface. The placement of SWI/SNF between the octamer and DNA could make it easier to disrupt histone–DNA interactions

    Immobilization of tannase from Rhizopus oryzae and its efficiency to produce gallic acid from tannin rich agro-residues

    No full text
    200-204Different tannin rich agro-residues, like sal seed (21% tannin), fruit of myrobalan (37.6% tannin) and tea-leaf (14.1% tannin) were selected for enzymatic conversion of their tannin content to gallic acid. These tannin rich substrates were used as carbon source in Czapek-dox medium for the production of tannase (E.C. 3.1.1.20, tannin acyl hydrolase) from Rhizopus oryzae (RO IIT RB-13, NRRL-21498). The maximum enzyme production of 17.7 U/mL was obtained in sal seed powder incubated for 48 h at 30ºC. The enzymatic conversion of these agro-residues was carried out using immobilized tannase. Substrate concentrations of 8% sal seed, 7% myrobalan and 6% tea leaf (w/v) were found to be the optimum for maximum bioconversion. The maximum bioconversion (90 and 87%, respectively) was achieved with sal seed and tea leaf as substrate at 40ºC and initial pH 4.5. In case of myrobalan, the maximum bioconversion was 90.2% at 50ºC and initial pH 5.0. Moreover, optimization of the pH and temperature largely reduced the incubation time to 36 h. The immobilized tannase was stable for 7 cycles. The kinetic properties of immobilized enzyme revealed that there was a decrease in maximal reaction velocity (Vmax) and increase in Michaelis constant (Km) when compared to its free native counterpart

    ISWI Remodelers Slide Nucleosomes with Coordinated Multi-Base-Pair Entry Steps and Single-Base-Pair Exit Steps

    Get PDF
    SummaryISWI-family enzymes remodel chromatin by sliding nucleosomes along DNA, but the nucleosome translocation mechanism remains unclear. Here we use single-molecule FRET to probe nucleosome translocation by ISWI-family remodelers. Distinct ISWI-family members translocate nucleosomes with a similar stepping pattern maintained by the catalytic subunit of the enzyme. Nucleosome remodeling begins with a 7 bp step of DNA translocation followed by 3 bp subsequent steps toward the exit side of nucleosomes. These multi-bp, compound steps are comprised of 1 bp substeps. DNA movement on the entry side of the nucleosome occurs only after 7 bp of exit-side translocation, and each entry-side step draws in a 3 bp equivalent of DNA that allows three additional base pairs to be moved to the exit side. Our results suggest a remodeling mechanism with well-defined coordination at different nucleosomal sites featuring DNA translocation toward the exit side in 1 bp steps preceding multi-bp steps of DNA movement on the entry side

    Histone Octamer Structure Is Altered Early in ISW2 ATP-Dependent Nucleosome Remodeling.

    No full text
    Nucleosomes are the fundamental building blocks of chromatin that regulate DNA access and are composed of histone octamers. ATP-dependent chromatin remodelers like ISW2 regulate chromatin access by translationally moving nucleosomes to different DNA regions. We find that histone octamers are more pliable than previously assumed and distorted by ISW2 early in remodeling before DNA enters nucleosomes and the ATPase motor moves processively on nucleosomal DNA. Uncoupling the ATPase activity of ISW2 from nucleosome movement with deletion of the SANT domain from the C terminus of the Isw2 catalytic subunit traps remodeling intermediates in which the histone octamer structure is changed. We find restricting histone movement by chemical crosslinking also traps remodeling intermediates resembling those seen early in ISW2 remodeling with loss of the SANT domain. Other evidence shows histone octamers are intrinsically prone to changing their conformation and can be distorted merely by H3-H4 tetramer disulfide crosslinking

    BAF chromatin remodeling complex subunit diversity promotes temporally distinct gene expression programs in cardiogenesis

    No full text
    AbstractChromatin remodeling complexes instruct cellular differentiation and lineage specific transcription. The BRG1/BRM associated factor (BAF) complexes are important for several aspects of differentiation. We show that the catalytic subunit Brg1 has a specific role in cardiac precursors (CPs) to initiate cardiac gene expression programs and repress non-cardiac expression. Using immunoprecipitation with mass spectrometry (IP-MS), we determined the dynamic composition of BAF complexes during mammalian cardiac differentiation, and identified BAF60c (SMARCD3) and BAF170 (SMARCC2) as subunits enriched in CPs and cardiomyocytes (CM). Baf60c and Baf170 co-regulate gene expression with Brg1 in CPs, but in CMs control different gene expression programs, although still promoting a cardiac-specific gene set. BRG1, BAF60, and BAF170 all modulate chromatin accessibility, to either promote accessibility at activated genes, while closing up chromatin at repressed genes. BAF60c and BAF170 are required for proper BAF complex composition and stoichiometry, and promote BRG1 occupancy in CM. Additionally, BAF170 facilitates expulsion of BRG1-containing complexes in the transition from CP to CM. Thus, dynamic interdependent BAF complex subunit assembly modulates chromatin states and thereby directs temporal gene expression programs in cardiogenesis.Significance statementBRG1/BRM associated factors (BAF) form multi-subunit protein complexes that reorganize chromatin and regulate transcription. Specific BAF complex subunits have important roles during cell differentiation and development. We systematically identify BAF subunit composition and find temporal enrichment of subunits during cardiomyocyte differentiation. We find the catalytic subunit BRG1 has important contributions in initiating gene expression programs in cardiac progenitors along with cardiac-enriched subunits BAF60c and BAF170. Both these proteins regulated BAF subunit composition and chromatin accessibility and prevent expression of non-cardiac developmental genes during precursor to cardiomyocyte differentiation. Mechanistically, we find BAF170 destabilizes the BRG1 complex and expels BRG1 from cardiomyocyte-specific genes. Thus, our data shows synergies between diverse BAF subunits in facilitating temporal gene expression programs during cardiogenesis
    corecore