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SUMMARY

ISWI-family enzymes remodel chromatin by sliding
nucleosomes along DNA, but the nucleosome trans-
location mechanism remains unclear. Here we
use single-molecule FRET to probe nucleosome
translocation by ISWI-family remodelers. Distinct
ISWI-family members translocate nucleosomes
with a similar stepping pattern maintained by the
catalytic subunit of the enzyme. Nucleosome remod-
eling begins with a 7 bp step of DNA translocation
followed by 3 bp subsequent steps toward the exit
side of nucleosomes. These multi-bp, compound
steps are comprised of 1 bp substeps. DNA move-
ment on the entry side of the nucleosome occurs
only after 7 bp of exit-side translocation, and each
entry-side step draws in a 3 bp equivalent of DNA
that allows three additional base pairs to be moved
to the exit side. Our results suggest a remodeling
mechanism with well-defined coordination at differ-
ent nucleosomal sites featuring DNA translocation
toward the exit side in 1 bp steps preceding multi-
bp steps of DNA movement on the entry side.

INTRODUCTION

The packaging of genomic DNA into nucleosomes and higher-

order chromatin structures represses many essential DNA

transactions, including transcription, DNA repair, replication,

and recombination. DNA accessibility during these processes

is regulated in part by ATP-dependent chromatin-remodeling

enzymes, which utilize the energy from ATP hydrolysis to

assemble, disassemble, mobilize, or restructure nucleosomes.

These remodelers typically possess a catalytic subunit and

one or more accessory subunits. The catalytic subunits contain
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a conserved ATPase domain that shares sequence homology

with superfamily 2 (SF2) helicases, as well as unique flanking

domains that give rise to four distinct remodeler families: SWI/

SNF, ISWI, CHD/Mi2, and INO80 (Clapier and Cairns, 2009;

Gangaraju and Bartholomew, 2007). The ATPase domain binds

to and translocates DNA at a site internal to the nucleosome,

which is two helical turns (or 20 bp) from the dyad and referred

to as the SHL2 site (Dang and Bartholomew, 2007; Kagalwala

et al., 2004; Lorch et al., 2005; Saha et al., 2002, 2005; Schwan-

beck et al., 2004; Whitehouse et al., 2003; Zofall et al., 2006).

Depending on the subunit composition, remodelers can display

divergent remodeling activities. For example, ISWI-family

enzymes reposition nucleosomes while maintaining their canon-

ical structure, whereas SWI/SNF-family enzymes not only can

translocate nucleosomes but also can change the nucleosome

structure, alter histone compositions, or eject histone octamers

altogether (Clapier and Cairns, 2009). Within the ISWI family,

remodelers such as human ACF and yeast ISW2 help generate

regularly spaced nucleosomal arrays (Ito et al., 1997; Längst

et al., 1999; Tsukiyama et al., 1999; Varga-Weisz et al., 1997),

whereas yeast ISW1b largely lacks nucleosome spacing activity

(Stockdale et al., 2006; Vary et al., 2003).

The mechanism by which remodeling enzymes couple ATP

hydrolysis to nucleosome translocation remains incompletely

understood. Various models have been proposed for how

remodelers reposition nucleosomes along DNA. The ‘‘twist diffu-

sion’’ model hypothesizes that remodelers generate a twist

defect in the DNA, which propagates around the histone oc-

tamer, shifting the position of the nucleosome one base pair

(bp) at a time (Flaus and Owen-Hughes, 2003; Kuli�c and Schies-

sel, 2003a; Richmond and Davey, 2003; Suto et al., 2003; van

Holde and Yager, 2003). The ‘‘loop propagation’’ model involves

DNAbeing pushed into the nucleosome at the entry side, forming

a loop that propagates around the nucleosome and resolves

at the exit side (Flaus and Owen-Hughes, 2003; Kuli�c and

Schiessel, 2003b; Längst and Becker, 2004; Lorch et al., 2005;

Narlikar et al., 2002; Schwanbeck et al., 2004; Strohner et al.,
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2005; Widom, 2001). As a third alternative, the ‘‘octamer swivel-

ing’’ model proposes that remodelers disrupt major contacts

between the DNA and histone octamer and allow a concerted

swiveling of the DNA relative to the histone core (Bowman,

2010; Lorch et al., 2010). It remains unclear whether the true

remodeling mechanism involves one of the above models,

a combination of aspects from multiple models, or a model

distinct from any of the above. Given their distinct remodeling

outcomes, different remodeler families or different members

within the same family may also utilize distinct mechanisms to

mobilize nucleosomes.

Single-molecule experiments can provide valuable insights

into chromatin remodeling. These experiments can resolve tran-

sient intermediate states of the nucleosome during remodeling

and reveal how DNA movement at different nucleosomal sites

is coordinated, allowing various models to be tested directly.

Single-molecule techniques have been applied to study DNA

or nucleosome translocation by remodeling enzymes in real

time (Amitani et al., 2006; Blosser et al., 2009; Lia et al., 2006;

Prasad et al., 2007; Shundrovsky et al., 2006; Sirinakis et al.,

2011; Zhang et al., 2006). These studies have shown that

SWI/SNF enzymes can both induce DNA-loop formation on

DNA and nucleosome substrates (Lia et al., 2006; Zhang et al.,

2006) and generate canonically repositioned nucleosomes

(Shundrovsky et al., 2006). Two recent studies have revealed

that ACF, an ISWI remodeler, moves nucleosomes in �7 or

�3 bp steps (Blosser et al., 2009), whereas RSC, a SWI/SNF

remodeler, translocates DNA substrates with a step size of

�2 bp (Sirinakis et al., 2011). Although these results place

constraints on the remodeling mechanisms, it remains unclear

how DNA is moved into the nucleosome at the entry side, prop-

agated around the octamer, and released at the exit side and

how these events are coordinated.

Moreover, the observed multi-bp translocation steps also

raised a question about their underlying mechanism. The

ATPase domains of remodeling enzymes are homologous to

those of SF2-family helicases, even though remodelers typically

do not exhibit helicase activity. An SF2 helicase has been shown

to unwind DNA or RNA duplexes in bursts ofmultiple bp (Dumont

et al., 2006; Myong et al., 2007), while translocating along the

oligonucleotide backbone with 1 bp steps (Cheng et al., 2011;

Myong et al., 2007). The translocation step size of SF1 helicases

has also been reported to be 1 bp (Dillingham et al., 2000; Lee

and Yang, 2006; Park et al., 2010). Based on these results, one

may hypothesize that DNA translocation during nucleosome

remodeling also occurs in 1 bp steps. However, such 1 bp steps

have not been observed for any chromatin remodeler. Does

this discrepancy indicate that remodelers and helicases have

evolved divergent DNA translocation mechanisms, or was the

resolution of previous measurements insufficient to detect 1 bp

steps? The elementary step size of chromatin remodelers

remains an unresolved question for this family of molecular

motors.

In this study, we used single-molecule fluorescence reso-

nance energy transfer (FRET) (Ha et al., 1996; Stryer and

Haugland, 1967; Zhuang et al., 2000) to probe nucleosome

translocation by several ISWI-family remodelers. Despite their

distinct accessory subunits and remodeling outcomes, we
observed a common stepping pattern for these enzymes. DNA

translocation at the exit side of the nucleosome occurred with

an initial 7 bp step followed by 3 bp subsequent steps. This step-

ping pattern was preserved even when all accessory subunits

of the enzyme were removed. The multi-bp steps were further

comprised of 1 bp elementary steps. Surprisingly, DNA move-

ment at the nucleosomal entry side appeared to occur only

after 7 bp of DNA were translocated toward the exit side and

to proceed in 3 bp increments, in accordance with the 3 bp

steps observed at the exit side after the initial 7 bp step. Our

results suggest a remodeling mechanism as follows: DNA is first

translocated toward the nucleosomal exit side by the ATPase

domain, 1 bp at a time, generating strain on the entry-side

DNA; after 7 bp of translocation, the strain becomes sufficiently

strong to trigger an enzyme action at the nucleosomal entry

side that draws DNA into the nucleosome; this action partially

releases the strain and allows three additional base pairs of

DNA to be translocated to the exit side; this 3 bp step then

repeats to generate processive DNA translocation across the

nucleosome.

RESULTS

Monitoring ISWI-Induced Nucleosome-Remodeling
Dynamics at the Exit Side
To monitor the remodeling dynamics of individual nucleosomes

with single-molecule FRET, we reconstitutedmononucleosomes

with histone octamers labeled with the FRET donor dye Cy3 on

histone H2A and double-stranded DNA labeled with the

acceptor dye Cy5 (Figure 1A). The 601 nucleosome positioning

sequence (Lowary and Widom, 1998) was used to place the

octamer at a well-defined position, such that the DNA wrapped

around the histone octamer in �1.7 turns (Chua et al., 2012;

Luger et al., 1997; Makde et al., 2010; Vasudevan et al., 2010),

leaving n bp of linker DNA on the exit side and 78 bp of linker

DNA on the entry side (Table S1 available online). The nucleo-

somes were anchored onto a PEG-coated quartz surface, and

fluorescence signals from individual nucleosomes were moni-

tored with a total-internal-reflection fluorescence (TIRF) geom-

etry (Figure 1A). Although the presence of two H2A subunits

on each histone octamer led to three different donor-labeling

configurations (donor on the H2A subunit proximal to the

acceptor on the DNA, donor on the distal H2A, and donors on

both H2A subunits), their distinct FRET values allowed us to

clearly distinguish these populations at the single-nucleosome

level and to specifically select the first population for further

analyses (Figure S1A) (Blosser et al., 2009). Addition of remodel-

ers, such as yeast ISW2, and ATP to nucleosomes caused

a decrease in FRET that was not observed when the enzyme

was added without ATP (Figures 1B and S1A–S1C), consistent

with the ability of ISW2 and similar enzymes to mobilize the

histone octamer toward the center of the DNA (He et al., 2006;

Kagalwala et al., 2004; Kassabov et al., 2002; Stockdale et al.,

2006; Yang et al., 2006). Spontaneous fraying of DNA ends previ-

ously observed on the 0.01–0.05 s timescale (Li et al., 2005) was

not visible in our experiments, which have a resolution of 0.3–1 s.

To quantitatively interpret FRET changes in terms of how

many base pairs of DNA were translocated to the exit side, we
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Figure 1. Probing DNA Translocation on the

Exit Side of the Nucleosome by Single-

Molecule FRET

(A) Schematic of FRET detection for DNA trans-

location on the exit side of the nucleosome. The

nucleosomes are labeled with the FRET donor,

Cy3 (green star), and acceptor, Cy5 (red star). The

histone octamer and DNA are depicted as a yellow

cylinder and a blue line, respectively.

(B) Representative Cy3 (green) and Cy5 (red)

fluorescence and FRET (blue) time traces showing

translocation of a single nucleosome after addition

of the enzyme and ATP at time zero.

See also Table S1 and Figure S1.
generated a calibration curve of FRET versus the length of the

exit-linker DNA (Figure S1D) by measuring the FRET values for

a series of nucleosome constructs with different exit-linker

lengths (varying n, Table S1). To further validate this calibration

for determining the exit-linker length of an ISWI-induced remod-

eling product, we prepared another series of nucleosomes with

the same initial linker lengths (78 bp on the entry side and 3 bp

on the exit side) but each possessing a 2 nucleotide (nt) single-

stranded DNA (ssDNA) gap at a specified distance (m bp) from

SHL2 to stall translocation after m bp of movement (Lorch

et al., 2005; Saha et al., 2005; Schwanbeck et al., 2004; Zofall

et al., 2006). As expected, the m = 0 construct exhibited no

remodeling even upon addition of ISW2 and ATP. The FRET

value of the m > 0 constructs after remodeling by ISW2

decreased as m increased (Figure S1E). Such FRET change

was not observed when the enzyme was added alone without

ATP (Figure S1C). Quantitatively, the dependence of the post-

remodeling FRET values on m, i.e., the amount of DNA trans-

location allowed, was identical to the dependence of FRET on

the preset exit-linker length n (Figures S1D and S1E), indicating

that the observed FRET changes were due to DNA translocation

to the exit side and that the amount of DNA translocation can

be quantified based on the calibrations.

The Translocation Step Sizes Are Conserved among
Different ISWI-Family Members
We studied nucleosome remodeling by three representative

yeast ISWI enzymes with different accessory proteins: (1)

ISW2, which is comprised of a catalytic subunit, Isw2

(130 kDa), and three accessory subunits, Itc1 (146 kDa), Dpb4

(22 kDa), and Dls1 (18 kDa) (McConnell et al., 2004); (2) ISW1b,

which is comprised of the catalytic subunit Isw1 (131 kDa),

homologous to Isw2, and two different accessory subunits,

Ioc2 (93 kDa) and Ioc4 (55 kDa) (Vary et al., 2003); and (3) the

catalytic subunit of ISW2 alone, which will be referred to as

Isw2p for clarity. Isw1 and Isw2 each contain a single ATP-

binding site.

We first added ISW2 and ATP to nucleosomes with 3 bp of

linker DNA on the exit side (n = 3 bp; Table S1). We observed

a stepwise decrease in FRET with pauses at FRET values of

0.46 ± 0.03 and 0.26 ± 0.04 (Figures 2A and S2A). These pauses

correspond to a translocation of 6.9 ± 0.6 bp of DNA prior to the
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first pause and 3.4 ± 0.6 bp between the first and second pauses.

A similar stepping behavior was also observed for nucleosomes

with a different initial exit-linker length (n = �3 bp, i.e., 3 bp

omitted from the 601 sequence) (Table S1), except that the

higher initial FRET value allowed us to observe two additional

pauses that occurred after further translocation by 3.2 ± 0.5 bp

and 3.6 ± 0.8 bp, respectively (Figures 2A and S2A). These

data indicate that nucleosome translocation by ISW2 involves

a unique first translocation step of approximately 7 bp in size

and subsequent steps that are approximately 3 bp each. These

step sizes are quantitatively similar to the ones previously

observed for the human ISWI remodeler ACF (Blosser et al.,

2009), the catalytic subunit of which shares sequence homology

with that of ISW2 (Hota and Bartholomew, 2011).

To test whether this stepping pattern was also shared by

other ISWI enzymes with similar catalytic subunits, we probed

nucleosome-remodeling dynamics by ISW1b, which possesses

a catalytic subunit homologous to that of ISW2. Notably, nucle-

osome remodeling by ISW1b exhibited translocation step sizes

virtually identical to the ones observed for ISW2 (Figures 2B

and S2B), despite their different compositions of accessory

subunits and nucleosome-spacing activities (McConnell et al.,

2004; Stockdale et al., 2006; Tsukiyama et al., 1999; Vary

et al., 2003).

Next, we purified the catalytic subunit of ISW2, Isw2p, without

any accessory subunits. Due to its low nucleosome-binding

affinity and processivity (Hota and Bartholomew, 2011), nucleo-

somes exhibited only a limited amount of DNA translocation

before enzyme dissociation. Therefore, typically only two trans-

location pauses were detected, independent of the initial exit-

linker length (n = 3 or �3 bp). Nonetheless, the first pause

again occurred after�7 bp of DNA translocation and the second

pause after an additional �3 bp (Figures 2C and S2C).

For ISW1b and Isw2p, a fraction of the remodeling traces

(�36% and �31%, respectively) displayed reversals of the

translocation direction, as reflected by back-and-forth FRET

changes, within the dynamic range of our measurement. Such

direction reversal was rarely observed for intact ISW2 com-

plexes. Analysis of the FRET values at direction-reversal points

suggests that direction reversal by Isw2p preferably occurred

at the 7 bp pause (Figure S2D). In contrast, the direction-reversal

positions of the ISW1b enzymes seemed to coincide with the



Figure 2. Identical Step Sizes of DNA Translocation on the Exit Side of the Nucleosome Induced by Different ISWI-Family Enzymes

(A) Remodeling of nucleosomes with initial exit-linker DNA length of n = 3 bp or n =�3 bp by ISW2. Left: FRET time trace showing ISW2-induced translocation of

a single n = 3 bp nucleosome. 6.2 nM ISW2 and 2 mM ATP were added at time zero. Middle: Histogram of the FRET values at translocation pauses constructed

from n = 3 bp nucleosomes. Right: FRET histograms of the translocation pauses constructed from n = �3 bp nucleosomes.

(B) Remodeling of the n = 3 bp and n = �3 bp nucleosomes by ISW1b. FRET histograms of the pauses for n = 3 bp (left) and n = �3 bp (right) nucleosomes in the

presence of 8.8 nM ISW1b and 10–150 mM ATP.

(C) Remodeling of the n = 3 bp and n =�3 bp nucleosomes by Isw2p. FRET distribution of the pauses for the n = 3 bp (left) and n =�3 bp (right) nucleosomes in the

presence of 69 nM Isw2p and 1 mM ATP.

The nucleosome schemes display the footprint of the histone octamer (yellow oval) on the DNA (blue line). Numbers above double-headed arrows shown in the

histograms represent mean step sizes.

See also Figure S2.
5 bp and 10 bp periodicities of the nucleosome (Figure S2E) but

did not correlate with the translocation step sizes determined

from traces that did not exhibit direction reversal.

The Multi-bp DNA Translocation Steps at the
Nucleosomal Exit Side Are Comprised of 1 bp
Elementary Steps
In order to explore whether the observed multi-bp steps are

further comprised of hidden translocation events with a smaller

step size, we measured the dwell times (t1 and t2) of the first

two translocation phases during ISW2-induced remodeling

for the n = 3 bp nucleosomes (Figure 3A). In a simple model

where each transition consists of a series of irreversible elemen-

tary steps with an identical rate constant k, the corresponding

transition time t should follow a G-distribution, AtN�1exp(-kt)

(Dumont et al., 2006; Myong et al., 2007). Depending on whether

the stepping transient itself or the wait time between steps is

rate-limiting, the total number of elementary steps within the

transition would be either N or N + 1, respectively. Notably, the

dwell time (t1 and t2) distributions were both well described by
a G-distribution, with N = 6.5 ± 0.4 and 3.4 ± 0.4 for the first

and second translocation phases, respectively (Figure 3B).

Given the 6.9 ± 0.6 bp and 3.4 ± 0.6 bp of DNA translocation

observed during the two phases (Figure 2A), these N values

correspond to a mean elementary step size close to 1 bp

(1.1 ± 0.2 bp or 0.9 ± 0.1 bp for the t1 phase and 1.0 ± 0.3 bp

or 0.8 ± 0.2 bp for the t2 phase depending onwhether the number

of steps equals N or N + 1, respectively). These results suggest

that the multi-bp steps are likely compound steps consisting of

1 bp elementary steps.

Considering that the assumptions underlying the G-distribu-

tion may not be fully satisfied for the translocation phases, we

set out to detect the elementary 1 bp steps directly. To this

end, we reduced the stepping rate in two alternative ways. First,

we used low ATP concentrations in combination with high

concentrations of the nucleotide analog ATP-g-S, which hydro-

lyzes at a dramatically reduced rate. Using this approach, we

directly observed 1 bp translocation steps in single-molecule

FRET traces (Figure 3C). In addition to the 1 bp steps, the traces

also showed larger step sizes of 2 and 3 bp. Both 1 bp and larger
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Figure 3. The Multi-bp Translocation Steps on the Exit Side of the Nucleosome Are Comprised of 1 bp Elementary Steps

(A) FRET time trace of a nucleosome indicating the dwell times of the first two translocation phases (t1 and t2).

(B) Histogram of t1 and t2 values constructed from many nucleosomes. Fits to the G-distribution AtN�1exp(-kt) (black lines) yield N = 6.5 ± 0.4 and k = 0.52 ±

0.04 s�1 for the t1 phase (left) and N = 3.4 ± 0.4 and k = 0.67 ± 0.11 s�1 for the t2 phase (right).

(C) FRET time trace, before (gray) and after (blue) 5-point averaging, of a single n = 3 bp nucleosome in the presence of 6.2 nM ISW2, 2 mM ATP, and 2 mM

ATP-g-S. A HMM fit is shown by the red line. The horizontal orange dotted lines indicate 1 bp intervals (derived from the calibration in Figure S1D).

(D) Histograms of FRET plateaus frommany nucleosomes determined with the HMManalysis. Numbers above double-headed arrows representmean step sizes.

See also Figure S3.
steps occurred randomly at varying positions in different traces,

consistent with a uniform step size of 1 bp where some pauses

were too short to be resolved. Indeed, a simulation based on

the experimentally determined stepping rate constant and

FRET signal-to-noise ratio suggests that we would miss �50%

of the 1 bp steps. Although we cannot rule out a translocation

mechanism that involves heterogeneous steps of varying sizes,

we consider such a mechanism less likely given that the dura-

tions of the multi-bp steps follow a G-distribution with the

number of elementary steps matching the number of base pairs

translocated (Figures 3A and 3B).

For automated step identification, we utilized a hiddenMarkov

modeling (HMM) algorithm (McKinney et al., 2006) to determine

the distinct FRET states (plateaus) present in the FRET traces

(Figure 3C). We separately analyzed two FRET regions, 0.32 %

FRET% 0.62 and 0.59% FRET% 1, and allowed 10 initial states

in each region. The HMM analysis of the FRET traces converged

to �4–5 states in each region, suggesting that the state identifi-

cation was unlikely influenced by the initial parameter setting.

Moreover, we obtained nearly identical fits with an alternative

step-finding algorithm (Kerssemakers et al., 2006) (Figure S3A).

Remarkably, the histograms of the FRET plateau values exhibit

well-defined peaks each separated by 1.0 ± 0.2 bp (Figures 3D

and S3A).
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Alternatively, to reduce the stepping rate without using

ATP-g-S, we monitored remodeling at a lower temperature of

15�C, instead of the 30�C used for the above experiments.

Again, 1 bp steps were observed (Figure S3B). A histogram of

the FRET plateau values shows peaks separated by 1.0 ±

0.1 bp (Figure S3B). However, because of the reduced

enzyme-binding affinity and slower translocation kinetics at

this lower temperature, photobleaching restricted analysis to

only the first four 1 bp translocation steps (Figure S3B). Taken

together, our data suggest that the multi-bp translocation steps

observed at the exit side of the nucleosome are compound steps

comprised of 1 bp elementary steps.

Roles of ATP Binding and Hydrolysis during Nucleosome
Translocation
To dissect the roles of ATP binding and hydrolysis during nucle-

osome translocation, we examined the dwell times associated

with individual 1 bp steps at various concentrations of ATP

and ATP-g-S at 30�C. Photobleaching limited our analysis to

the first nine steps. At low ATP-g-S concentrations, the pause

duration after the seventh 1 bp step, tp,7, was noticeably longer

than the dwell times associated with all other 1 bp steps (Fig-

ure S4A). As the concentration of ATP-g-S increased, the pause

duration after the seventh step (tp,7) decreased (Figures 4A and



Figure 4. Dependence of the Stepping Kinetics on the Concentrations of ATP and ATP-g-S
(A) The pause duration after the first, 7 bp compound step (tp,7) at various ATP-g-S concentrations and 2 mM ATP.

(B) The pause duration between each 1 bp elementary step (tp) at various ATP-g-S concentrations and 2 mM ATP. All pauses except for the ones after 6, 7, and

8 bp of translocation were pooled to determine tp. As shown in Figure S4, in addition to the 7th pause, the 6th and 8th pauses also appear longer than the remaining

ones, likely due to errors in pause identification. The value of tp at 0 mM ATP-g-S was derived from 1/k value obtained from the G-distribution in Figure 3B.

(C) Dependence of tp on the ATP concentration at 2mMATP-g-S. At this saturating concentration of ATP-g-S, all pauses, including the 7th one, had approximately

equal durations and were pooled to determine tp.

All data are shown as the mean ± standard error of the mean (SEM) (N = 15–100 events). See also Figure S4.
S4A), whereas the dwell times of the other steps (tp) increased

(Figures 4B and S4A). As a result, all steps became equal in

duration at saturating ATP-g-S concentrations (Figure S4A). At

saturating ATP-g-S concentrations, the duration of these 1 bp

steps (tp) decreased with increasing ATP concentrations (Fig-

ures 4C and S4B). Given that ATP-g-S hydrolyzes much more

slowly than ATP and competes with ATP for binding to the

enzyme, the above results indicate that the individual 1 bp

translocation steps require ATP hydrolysis, whereas the pausing

observed after 7 bp of translocation involves an additional

ATP-binding event of the enzyme. Binding of ATP-g-S can thus

facilitate this event.

Monitoring ISWI-Induced Nucleosome-Remodeling
Dynamics at the Entry Side
In order tomonitor DNAmovement on the entry side of the nucle-

osome, wemoved the FRET acceptor dye Cy5 from the exit DNA

linker to the entry DNA linker, 10 bp away from the nucleosomal

edge, but kept the entry- and exit-linker lengths at 78 bp and

3 bp, respectively (Figure 5A). As is the case for the exit-side

labeling scheme, we were able to distinguish the different

donor-labeling configurations at the single-nucleosome level

and select for further analysis only those with a single Cy3 dye

on the proximal H2A (Figure S5A).

Upon addition of ISW2 and ATP and after a waiting period twait,

the FRET time traces displayed an increase in FRET as the Cy5

dye on the entry DNA linker was moved closer to the octamer

(Figure 5B). As DNA continues to move into the nucleosome,

the Cy5 dye is expected to eventually pass the Cy3 dye, causing

a FRET decrease. Indeed, such a nonmonotonic FRET change

was observed (Figure 5B). No FRET change was observed

when ISW2 was added without ATP (Figure S5B).

Coordination of the DNA Movement on the Entry
and Exit Sides of the Nucleosome
To investigate the coordination of entry-side and exit-side re-

modeling activity, we first compared the waiting times before
the onset of any FRET change, twait, at both entry and exit sides

(Figures 1B and 5B). Surprisingly, the average twait value

measured at the entry side was substantially longer than that

at the exit side (Figure 5C), suggesting that exit-side DNA trans-

location likely occurred prior to any DNA movement at the entry

side. The delay between entry-side and exit-side movements

decreased as the ATP concentration increased (Figure 5C).

Because DNA translocation at the exit side occurred in 1 bp

steps, we reason that this movement was caused by the SF2-

homologous ATPase domain bound at the SHL2 site of the

nucleosome. Our observations may thus be interpreted as

DNA translocation at SHL2 by the ATPase occurring prior to

any DNA movement into the nucleosomal entry side.

Because twait was measured at the entry and exit sides with

differently labeled constructs, the observed time difference

provides only an indirect measure of the order of these events.

To further test whether DNA translocation at SHL2 by the

ATPase domain is indeed required for DNA movement at the

entry side, we generated entry-side-labeled nucleosomes with

a 2 nt ssDNA gap positioned at the SHL2 site (m = 0 bp, Fig-

ure 6A), which prevented any DNA translocation to the exit

side (Figure S1E). Interestingly, addition of ISW2 and ATP to

these nucleosomes did not cause any FRET change at the entry

side (Figures 6B and 6C), indicating that DNA movement at the

entry side was also inhibited.

Next, we generated a series of entry-side-labeled nucleosome

constructs with ssDNA gaps at varying distances (m bp) from

the SHL2 site (Figure 6A), which allow only m bp of DNA to

be translocated to the exit side as shown in Figure S1E. Remark-

ably, after addition of ISW2 enzyme and 2 mMATP, no entry-side

FRET change was observed for nucleosomes with m % 7 bp,

whereas long-lasting FRET increases were observed for

nucleosomes with m > 7 bp (Figures 6B and 6C). At higher

ATP concentrations (R200 mM), the m < 7 bp nucleosomes

still showed no change in FRET. A minor fraction (�40%) of

the m = 7 bp nucleosomes showed an increase in FRET but

mostly with only transient excursions to higher FRET, whereas
Cell 152, 442–452, January 31, 2013 ª2013 Elsevier Inc. 447



Figure 5. DNA Movement on the Exit Side

of the Nucleosome Precedes that on the

Entry Side

(A) Schematic of the nucleosome construct used

for measuring DNA movement at the entry side.

(B) Donor signal (green), acceptor signal (red),

and FRET (blue) time traces showing ISW2-

induced remodeling after adding 12 nM ISW2

and 2 mM ATP at time zero. The dashed line

indicates the onset of FRET change after an initial

wait time, twait.

(C) Comparison of twait on the entry (yellow bars)

and exit sides (purple bars) of the nucleosome

under identical enzyme and ATP concentrations.

Data are shown as the mean ± SEM (N = 80–220

events).

See also Figure S5.
only <20% of the nucleosomes showed a stable increase in

FRET. In contrast, the vast majority (�75%–90%) of m > 7 bp

nucleosomes exhibited an increase in FRET, among which

most (80%–90%) showed stable FRET changes. These obser-

vations are consistent with DNA movement at the entry side

occurring only after the ATPase has translocated 7 bp of DNA

toward the exit side, likely because a certain amount of strain

on the entry-side DNA is required to trigger any movement into

the nucleosome. ssDNA gaps not only limit the amount of DNA

translocation by the ATPase domain but can also inhibit the

generation or propagation of DNA torsion. Among these two

factors, entry-side DNA movement was more likely inhibited by

the limited amount of ATPase translocation because the inhibi-

tion was only observed for the m % 7 nucleosomes, whereas

ssDNA gaps at m > 7 should also relax torsional strain on the

entry-side DNA. Further supporting this interpretation, the twait

values observed for the m > 7 nucleosomes were quantitatively

similar to those observed for intact nucleosomes without any

gap (Figure S6A), suggesting that the gaps did not perturb the

strain required to trigger entry-side movement. These obser-

vations are also consistent with the long pause observed

after the first 7 bp of DNA translocation to the exit side for intact

nucleosomes without gaps (Figure 2A). We reason that the

accumulated strain after 7 bp of DNA translocation stalls exit-

side translocation momentarily, and that an entry-side move-

ment needs to be triggered to partially relax the strain and allow

additional DNA to be pumped to the exit side, giving rise to the

observed pause.

Notably, the post-remodeling FRET values at the entry side

were identical within error for the nucleosomes with gaps at

m = 8, 9, or 10 bp but distinct from those observed for the

m = 11, 12, and 13 bp nucleosomes, which were also identical

to each other (Figures 6C). These observations are consistent

with a 3 bp equivalent of DNA being moved into the nucleosome

per step on the entry side, which in turn allows an additional

3 bp of DNA to be translocated to the exit side. The rationale is

as follows. Since 7 bp of DNA can be translocated to the exit
448 Cell 152, 442–452, January 31, 2013 ª2013 Elsevier Inc.
side without any entry-side DNA move-

ment, if each step of the entry-side move-

ment allows an additional 3 bp of DNA
to be pumped to the exit side, the cases of translocating 8, 9,

and 10 bp to the exit side would all require only one entry step,

leading to the same post-remodeling entry-side FRET values

for the m = 8, 9, and 10 bp nucleosomes. The cases of translo-

cating 11, 12, and 13 bp to the exit side would all require two

entry steps instead, and thus the post-remodeling entry-side

FRET values for the m = 11, 12, and 13 bp nucleosomes would

be identical to each other but different from those of the m = 8,

9, and 10 bp nucleosomes. Our observations agree with these

predictions (Figure 6C), demonstrating that the first entry-side

step moved a 3 bp equivalent of DNA into the nucleosome,

allowing 3 bp to be translocated to the exit side. Our data are

also consistent with a second 3 bp entry-side step, though it is

formally possible that the second step size is greater than 3 bp

because the FRET values have not been measured for the

m > 13 bp nucleosomes. However, given that after the initial

7 bp translocation step, the subsequent exit-side translocation

steps are all �3 bp in size, DNA movement on the entry side

likely also occurs in increments of �3 bp, giving rise to

the �3 bp compound steps observed at the exit side.

Interestingly, even though up to 7 bp of DNA can be translo-

cated to the exit side without any observable action at the

entry side, the exit-side translocation of the m < 7 nucleosomes

appeared less stable: the majority of the m = 5 nucleosomes

exhibited direction reversals (Figure S6B). In contrast, such

direction reversal was rarely observed for m > 7 nucleosomes

(Figure S6B), suggesting that action on the entry side helps

prevent direction reversal in DNA translocation.

DISCUSSION

Chromatin remodelers utilize the energy from ATP hydrolysis

to disrupt DNA-histone contacts and mobilize nucleosomes

along DNA. In this work, we used single-molecule FRET to

study nucleosome translocation by ISWI-family remodelers.

We observed DNA movement at different sites of the nucleo-

some and determined how movements at these sites were



Figure 6. Entry-Side DNA Movement Occurs after 7 bp of DNA Translocation toward the Exit Side and Proceeds in 3 bp Steps

(A) Schematic of the nucleosome constructs used to monitor DNAmovement at the entry side when exit-side translocation is restricted by a 2 nt ssDNA gap. The

gap is located m bp away from the SHL2 site (shown as a purple line) such that m bp of DNA can be translocated to the exit side.

(B) FRET time traces of singlem = 0, 7, and 8 bp nucleosomes (blue, green, and orange lines, respectively) after addition of 12 nM ISW2 and 2 mMATP at time zero.

(C) FRET values before (red bar) and after (blue bars) remodeling by ISW2 as a function of the distancem to the SHL2 site. Because the DNA path on the entry side

may involve bending and/or twisting due to the direct interaction with the remodeling enzyme, we do not expect a similar linear dependence of FRET on the linker

DNA length as on the exit side where the linker DNA is largely free of enzyme-induced distortion. Data are shown as the mean ± SEM (N = 80–150 nucleosomes).

See also Figure S6.
coordinated. Our results suggest a previously unexpectedmodel

for nucleosome translocation by ISWI remodelers.

We showed that several representative ISWI remodelers

from yeast, despite their highly distinct accessory subunits and

remodeling outcomes, all translocated nucleosomes with a

common stepping pattern (Figure 2). Exit-side translocation

occurred with an initial 7 bp step followed by 3 bp subsequent

steps. This stepping behavior was preserved even upon removal

of all accessory subunits, leaving only the catalytic subunit for

remodeling. These step sizes were also identical to the ones

previously observed for the human ISWI remodeler ACF, and

previous evidence on ACF suggests that the step sizes are

possibly independent of the DNA sequence used (Blosser

et al., 2009). Taken together, these results suggest a common

remodeling mechanism for ISWI remodelers that is enabled by

the catalytic subunit and conserved from yeast to humans.

Notably, the step sizes observed here are not identical to the

5 bp or 10 bp periodicity of nucleosomal DNA-histone contacts

(Hall et al., 2009; Luger et al., 1997) and thus are likely influenced

by the remodeling enzymes, though we do not preclude the

possibility that the step sizes are determined by a combination

of enzyme and nucleosome properties. Moreover, the energy

landscape of the nucleosomal substrates could affect the trans-

location kinetics quantitatively by modulating the dwell times

between steps, which may explain why the remodeling products

observed in ensemble biochemical analyses tend to exhibit

�10 bp intervals for DNA translocation (Schwanbeck et al.,

2004; Zofall et al., 2006).

We further showed that the multi-bp steps observed on the

nucleosomal exit side were compound steps comprised of

1 bp elementary steps (Figure 3). Given that the ATPase domains

of the ISWI remodelers share sequence homology with SF2

helicases, which translocate DNA with 1 bp elementary steps

(Cheng et al., 2011; Myong et al., 2007), the 1 bp steps of the

remodelers most likely reflect an intrinsic translocation property

of their ATPase domains. Given that the ATPase domain binds

to the SHL2 site of the nucleosome 20 bp from the dyad (Dang

and Bartholomew, 2007), our results suggest that the ATPase
domain translocates DNA at SHL2 1 bp at a time, which then

propagates to the exit side, resulting in the observation of 1 bp

steps at the exit side. Although such translocation likely tracks

a DNA strand, the ATPase domain may partially disengage

from the SHL2 site from time to time, and hence there may not

be substantial accumulation of DNA rotation during remodeling

(Bowman, 2010; Cairns, 2007). It has been shown previously

that ssDNA gaps placed between SHL2 and the exit site do

not interfere with nucleosome sliding by ISWI enzymes (Schwan-

beck et al., 2004; Zofall et al., 2006). It is thus possible that the

propagation of DNA from the SHL2 site to the exit side also

does not require torsional strain.

What is the mechanism underlying the multi-bp, compound

steps for ISWI remodelers? Because DNA translocation at

SHL2 toward the exit side occurs in 1 bp steps, it is reasonable

to hypothesize that the multi-bp steps are a result of actions at

the entry side. Surprisingly, we found that DNA movement at

the entry side appeared to only occur after 7 bp of DNA were

translocated toward the exit side (Figures 5 and 6). A net trans-

location to the exit side without any DNA being moved into the

nucleosome will cause strain on the entry-side DNA. We thus

hypothesize that a certain amount of strain needs to accumulate

on the DNA before entry-side movement is triggered. Such

strain may take the form of DNA stretching or transient con-

formational changes of the octamer or both. DNA stretching

under force (Smith et al., 1996) or in nucleosome structures

(Ong et al., 2007), as well as conformational changes of the

octamer (Böhm et al., 2011), have been previously observed.

According to this picture, as the ATP concentration increases,

the strain on the entry-side DNA created by translocation at

SHL2 should accumulate faster, and thus the time lag between

DNA movements at the SHL2 and entry sites should decrease.

Indeed, the time difference observed between entry- and exit-

side movements decreased as the ATP concentration was

increased (Figure 5).

Interestingly, once entry-side movement was triggered, it

appeared to proceed in 3 bp increments that allowed 3 addi-

tional base pairs to be moved to the exit side (Figure 6), which
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Figure 7. A Model for Nucleosome Translo-

cation by ISWI-Family Remodelers

DNA, histone octamer, and remodeler are shown in

black/gray/red, yellow, and blue/green, respec-

tively. Theupper and lowerDNAgyresaredepicted

as solid black and dashed gray lines, respectively.

Each base pair of DNA translocated to the exit

side is shown by a red dot. A cartoon representa-

tion of the remodeler is shown as a semi-

transparent light blue or light green shape, and the

locations of the ATPase and linker-DNA-binding

domains as blue and green spheres, respectively.

ISWI-induced remodeling starts with the ATPase

domain translocating DNA from the SHL2 site

toward the exit side, 1 bp at a time. The trans-

location by the ATPase domain generates strain

on the entry-side DNA (depicted by magenta/

purple coloring of the DNA), which initially remains

immobile. After 7 bp of DNA translocation, the

accumulated strain is sufficiently strong to trigger

an entry-side action, possibly a conformational

change of the enzyme, which pushes a 3 bp

equivalent of DNA into the nucleosome. This action

partially relaxes the strain and allows three addi-

tional base pairs of DNA to be translocated

to the exit side. This cycle then repeats to allow

processive nucleosome translocation.
provides a simple explanation for why exit-side DNA trans-

location occurred with an initial 7 bp step followed by 3 bp

subsequent steps. Given that the pauses preceding the 3 bp

steps on the exit side can be shortened by addition of ATP-g-S

(Figure 4), indicating that an ATP-binding event is needed

for exiting the pause, one may hypothesize that this event is

related to the entry-side action. The entry-side step potentially

involves an enzyme action, for instance, a conformational

change of a linker-DNA-binding domain that draws in a 3 bp

equivalent of DNA. The HAND-SANT-SLIDE module, which

binds to the linker DNA on the entry side (Dang and Bartholo-

mew, 2007; Yamada et al., 2011), may play a role in this

process. Supporting this notion, mutations in the SLIDE domain

of ISW2 inhibited DNA movement on the entry side yet still

allowed a substantial amount of DNA translocation to the exit

side (Hota et al., 2013). It has been reported recently that the

DNA-translocation activity of the ISWI ATPase is inhibited by

a neighboring NegC region, and that binding of the HAND-

SANT-SLIDE module to linker DNA relieves this inhibition

(Clapier and Cairns, 2012). Thus, the HAND-SANT-SLIDE

module potentially plays two roles in nucleosome remodeling,

helping both DNA translocation to the exit side and DNA move-

ment on the entry side.

Based on the above results, we propose the following model

for nucleosome remodeling by ISWI-family enzymes (Figure 7).

ISWI-induced nucleosome remodeling starts with the ATPase

domain translocating DNA at the SHL2 site. This translocase

activity pumps DNA toward the exit side, 1 bp at a time, utilizing

energy from ATP hydrolysis. Translocation at SHL2 induces

strain on the entry-side DNA, which initially remains immobile.

After 7 bp of DNA are translocated, the strain becomes

sufficiently strong to trigger action on the entry side. This

entry-side action potentially involves a conformational change
450 Cell 152, 442–452, January 31, 2013 ª2013 Elsevier Inc.
between the linker-DNA-binding domain (possibly the SLIDE

domain) and the ATPase domain, which pushes a 3 bp equiva-

lent of DNA into the nucleosome, allowing an additional 3 bp

of DNA to be pumped to the exit side. After these 3 bp are

translocated to the exit side, the strain on the entry-side DNA

becomes sufficiently strong again to trigger another action on

the entry side, allowing another 3 bp to be translocated to the

exit side. This cycle repeats to allow processive nucleosome

translocation.

EXPERIMENTAL PROCEDURES

Preparation of Dye-Labeled Mononucleosomes

Double-stranded dye-labeled DNA constructs with varying flanking linker

lengths on the two sides of the 601 nucleosome positioning sequence and/

or a 2 nt ssDNA gap at specific locations were generated using a standard

PCR or annealing approach. Mononucleosomes were reconstituted from

Cy5-labeled DNA and histone octamers, labeled with Cy3 on histone H2A,

by salt dialysis and purified by gradient ultracentrifugation (Luger et al.,

1997) (see Extended Experimental Procedures).

Preparation of ISW2, Isw2p, and ISW1b

ISW2 and ISW1b were affinity-purified from Saccharomyces cerevisiae strains

BY4742 and YTT449, respectively, as previously described (Gangaraju and

Bartholomew, 2007; Tsukiyama et al., 1999) (see Extended Experimental

Procedures). For the isolation of the catalytic subunit Isw2p, we deleted

a portion of the ITC1 gene to disrupt the ITC1-Isw2p interaction and immuno-

purified the isolated catalytic subunit Isw2p.

Single-Molecule FRET

Biotinylated and dye-labeled mononucleosomes were surface-anchored

on poly(ethylene glycol)-coated quartz microscope slides through biotin-

streptavidin linkage, which did not inhibit the remodeling activity (Blosser

et al., 2009). Immobilized nucleosomes were excited with a 532 nm Nd:YAG

laser (CrystaLaser), and fluorescence emissions from Cy3 and Cy5

were detected using a prism-type TIRF microscope, filtered with a 550 nm



long-pass filter (Chroma Technology), spectrally separated by a 630 nm

dichroic mirror (Chroma Technology), and imaged onto the two halves of

a CCD camera (Andor iXonEM + 888 1024 3 1024).

In order to obtain nucleosomes labeled with a single donor (Cy3) dye and

a single acceptor dye (Cy5), we reconstituted nucleosomes with a mixture of

Cy3-labeled and unlabeled H2A. The presence of two H2A subunits in each

histone octamer gives rise to a heterogeneous population of nucleosomes

with three different labeling configurations, which can be separated in FRET

measurements at the single-molecule level (Figures S1 and S5) (Blosser

et al., 2009). In this work, we selected nucleosomes containing a single

donor on the H2A subunit proximal to the acceptor dye on DNA for further

analysis. The imaging buffer contained 12 mM HEPES, 40 mM Tris (pH 7.5),

60 mM KCl, 0.32 mM EDTA, 3 mMMgCl2, 10% glycerol, 0.02% Igepal (Sigma

Aldrich), an oxygen scavenging system (10% glucose, 800 mg ml�1 glucose

oxidase, 40 mg ml�1 catalase) to reduce photobleaching, 2 mM Trolox (Sigma)

to reduce photoblinking of the dyes (Rasnik et al., 2006), and 0.1 mg ml�1 BSA

(Promega). Imaging was performed at 30�C, unless otherwise mentioned.

Remodeling was induced by infusing the sample chamber with the imaging

buffer supplemented with remodeling enzyme, ATP or ATP + ATP-g-S, and

additional MgCl2 equimolar to the total amount of added nucleotide using

a syringe pump (KD Scientific).

Automated Step-Identification Analyses of FRET Time Traces

Nucleosome translocation steps were identified by fitting the FRET time traces

before photobleaching with a staircase function using a HMM algorithm

(McKinney et al., 2006) (http://bio.physics.illinois.edu/HaMMy.html) or an

alternative step-finding algorithm (Kerssemakers et al., 2006) (see Extended

Experimental Procedures).

To assign a number k that identifies the position of each pause for analyses

shown in Figure S4, the FRET value of the corresponding plateau was con-

verted into the exit DNA-linker length (in bp) and then rounded to the nearest

integer.
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