212 research outputs found
Synthesis, characterization and crystal structures of two new phenolic mannich bases
Two new Mannich bases, 5-methyl-2-((4-(pyridin-2-yl)piperazin-1-yl)methyl)phenol (1) and 5-methyl-2-((4-(4-nitrophenyl)piperazin-1-yl)methyl)phenol (2), were prepared and characterized structurally with elemental analysis, IR, UV and NMR spectroscopic techniques as well as single crystal X-ray diffraction. Compound I crystallizes in the monoclinic space group P21/c with unit cell dimensions a = 6.6726(2) Å, b =  17.0542(6)  Å, c = 13.3222(4) Å, β = 100.832(1)°, V = 1489.00 (8) Å3, Z = 4, R1 = 0.0408, wR2 = 0.1143. Compound II crystallizes in the monoclinic space P21 with unit cell dimensions a = 5.9519(2) Å, b = 17.3315(8) Å, c = 15.7237(7) Å, β = 90.348(2)°, V = 1621.95(12) Å3, Z = 4, R1 = 0.0353, wR2 = 0.0965. Both compounds have their structures stabilized by hydrogen bonding and π∙∙∙π interactions.               KEY WORDS: Mannich base, Piperazine, X-ray diffraction, Hydrogen bonds Bull. Chem. Soc. Ethiop. 2019, 33(2), 341-348.DOI: https://dx.doi.org/10.4314/bcse.v33i2.1
Novel palladium(II) complex derived from mixed ligands of dithizone and triphenylphosphine synthesis, characterization, crystal structure, and DFT study
ABSTRACT. A novel distorted square-planar palladium(II) complex of the type [Pd(Hdz)(PPh3)Cl], where (Hdz = dithizone mono deprotonate and PPh3 = triphenylphosphine), was synthesized in dichloromethane reactions between PdCl2 and a mixture of Hdz and PPh3. The new Pd(II) complex has been identified by FT-IR, electronic spectra, DFT calculations, molar conductivity, and single-crystal X-ray diffraction. An X-ray diffraction study revealed the structure of this complex, indicating distorted square planar coordination geometry around the Pd(II) ion by N, S, P, and Cl donor atoms. XRD analysis has also shown that the Pd(II) complex contains one five-membered ring formed by the coordination of the Hdz ligand through the nitrogen and sulfur atoms to the palladium metal center. To comprehend the strength of nucleophilic and electrophilic attack between the ligands and metal ions, the natural bond orbital (NBO) was used. Finally, density functional theory (DFT) was used to show the molecular reactivity and stability of the ligands and palladium complex.
KEY WORDS: Palladium(II), Dithizone mono deprotonated, Distorted square planar geometry, NBO analysis, DFT calculations
Bull. Chem. Soc. Ethiop. 2022, 36(3), 617-626. \
DOI: https://dx.doi.org/10.4314/bcse.v36i3.11  
Standard and Null Weak Values
Weak value (WV) is a quantum mechanical measurement protocol, proposed by
Aharonov, Albert, and Vaidman. It consists of a weak measurement, which is
weighed in, conditional on the outcome of a later, strong measurement. Here we
define another two-step measurement protocol, null weak value (NVW), and point
out its advantages as compared to WV. We present two alternative derivations of
NWVs and compare them to the corresponding derivations of WVs.Comment: 11 pages, 2 figures. To appear in Quantum Theory: A Two-Time Success
Story: Yakir Aharonov Festschrif
Weak Energy: Form and Function
The equation of motion for a time-independent weak value of a quantum
mechanical observable contains a complex valued energy factor - the weak energy
of evolution. This quantity is defined by the dynamics of the pre-selected and
post-selected states which specify the observable's weak value. It is shown
that this energy: (i) is manifested as dynamical and geometric phases that
govern the evolution of the weak value during the measurement process; (ii)
satisfies the Euler-Lagrange equations when expressed in terms of Pancharatnam
(P) phase and Fubini-Study (FS) metric distance; (iii) provides for a PFS
stationary action principle for quantum state evolution; (iv) time translates
correlation amplitudes; (v) generalizes the temporal persistence of state
normalization; and (vi) obeys a time-energy uncertainty relation. A similar
complex valued quantity - the pointed weak energy of an evolving state - is
also defined and several of its properties in PFS-coordinates are discussed. It
is shown that the imaginary part of the pointed weak energy governs the state's
survival probability and its real part is - to within a sign - the
Mukunda-Simon geometric phase for arbitrary evolutions or the Aharonov-Anandan
(AA) phase for cyclic evolutions. Pointed weak energy gauge transformations and
the PFS 1-form are discussed and the relationship between the PFS 1-form and
the AA connection 1-form is established.Comment: To appear in "Quantum Theory: A Two-Time Success Story"; Yakir
Aharonov Festschrif
Free expansion of two-dimensional condensates with a vortex
We study the free expansion of a pancake-shaped Bose-condensed gas, which is
initially trapped under harmonic confinement and containing a vortex at its
centre. In the case of a radial expansion holding fixed the axial confinement
we consider various models for the interactions, depending on the thickness of
the condensate relative to the value of the scattering length. We are thus able
to evaluate different scattering regimes ranging from quasi-three-dimensional
(Q3D) to strictly two-dimensional (2D). We find that as the system goes from
Q3D to 2D the expansion rate of the condensate increases whereas that of the
vortex core decreases. In the Q3D scattering regime we also examine a fully
free expansion in 3D and find oscillatory behaviour for the vortex core radius:
an initial fast expansion of the vortex core is followed by a slowing down.
Such a nonuniform expansion rate of the vortex core may be taken into account
in designing new experiments.Comment: 10 pages, 4 figure
Demonstration of quantum Zeno effect in a superconducting phase qubit
Quantum Zeno effect is a significant tool in quantum manipulating and
computing. We propose its observation in superconducting phase qubit with two
experimentally feasible measurement schemes. The conventional measurement
method is used to achieve the proposed pulse and continuous readout of the
qubit state, which are analyzed by projection assumption and Monte Carlo
wave-function simulation, respectively. Our scheme gives a direct
implementation of quantum Zeno effect in a superconducting phase qubit.Comment: 5 pages, 4 figure
Ophthalmic magnetic resonance imaging at 7.0 T using a 6-channel transceiver radiofrequency coil array in healthy subjects and patients with intraocular masses
OBJECTIVES: This study was designed to examine the feasibility of ophthalmic magnetic resonance imaging (MRI) at 7.0 T using a local 6-channel transmit/receive radiofrequency (RF) coil array in healthy volunteers and patients with intraocular masses. MATERIALS AND METHODS: A novel 6-element transceiver RF coil array that makes uses of loop elements and that is customized for eye imaging at 7.0 T is proposed. Considerations influencing the RF coil design and the characteristics of the proposed RF coil array are presented. Numerical electromagnetic field simulations were conducted to enhance the RF coil characteristics. Specific absorption rate simulations and a thorough assessment of RF power deposition were performed to meet the safety requirements. Phantom experiments were carried out to validate the electromagnetic field simulations and to assess the real performance of the proposed transceiver array. Certified approval for clinical studies was provided by a local notified body before the in vivo studies. The suitability of the RF coil to image the human eye, optical nerve, and orbit was examined in an in vivo feasibility study including (a) 3-dimensional (3D) gradient echo (GRE) imaging, (b) inversion recovery 3D GRE imaging, and (c) 2D T2-weighted fast spin-echo imaging. For this purpose, healthy adult volunteers (n = 17; mean age, 34 +- 11 years) and patients with intraocular masses (uveal melanoma, n = 5; mean age, 57 +- 6 years) were investigated. RESULTS: All subjects tolerated all examinations well with no relevant adverse events. The 6-channel coil array supports high-resolution 3D GRE imaging with a spatial resolution as good as 0.2 × 0.2 × 1.0 mm, which facilitates the depiction of anatomical details of the eye. Rather, uniform signal intensity across the eye was found. A mean signal-to-noise ratio of approximately 35 was found for the lens, whereas the vitreous humor showed a signal-to-noise ratio of approximately 30. The lens-vitreous humor contrast-to-noise ratio was 8, which allows good differentiation between the lens and the vitreous compartment. Inversion recovery prepared 3D GRE imaging using a spatial resolution of 0.4 × 0.4 × 1.0 mm was found to be feasible. T2-weighted 2D fast spin-echo imaging with the proposed RF coil afforded a spatial resolution of 0.25 × 0.25 × 0.7 mm. CONCLUSIONS: This work provides valuable information on the feasibility of ophthalmic MRI at 7.0 T using a dedicated 6-channel transceiver coil array that supports the acquisition of high-contrast, high-spatial resolution images in healthy volunteers and patients with intraocular masses. The results underscore the challenges of ocular imaging at 7.0 T and demonstrate that these issues can be offset by using tailored RF coil hardware. The benefits of such improvements would be in positive alignment with explorations that are designed to examine the potential of MRI for the assessment of spatial arrangements of the eye segments and their masses with the ultimate goal to provide imaging means for guiding treatment decisions in ophthalmological diseases
Quantum Optical Systems for the Implementation of Quantum Information Processing
We review the field of Quantum Optical Information from elementary
considerations through to quantum computation schemes. We illustrate our
discussion with descriptions of experimental demonstrations of key
communication and processing tasks from the last decade and also look forward
to the key results likely in the next decade. We examine both discrete (single
photon) type processing as well as those which employ continuous variable
manipulations. The mathematical formalism is kept to the minimum needed to
understand the key theoretical and experimental results
- …