44 research outputs found

    Loss of residues 119 – 136, including the first β-strand of human prion protein, generates an aggregation-competent partially “open” form

    Get PDF
    In prion replication, the cellular form of prion protein (PrPC) must undergo a full conformational transition to its disease-associated fibrillar form. Transmembrane forms of PrP have been implicated in this structural conversion. The cooperative unfolding of a structural core in PrPC presents a substantial energy barrier to prion formation, with membrane insertion and detachment of parts of PrP presenting a plausible route to its reduction. Here, we examined the removal of residues 119 - 136 of PrP, a region which includes the first β-strand and a substantial portion of the conserved hydrophobic region of PrP, a region which associates with the ER membrane, on the structure, stability and self-association of the folded domain of PrPC. We see an "open" native-like conformer with increased solvent exposure which fibrilises more readily than the native state. These data suggest a stepwise folding transition, which is initiated by the conformational switch to this "open" form of PrPC

    Characterization of prion disease associated with a two-octapeptide repeat insertion

    Get PDF
    Genetic prion disease accounts for 10–15% of prion disease. While insertion of four or more octapeptide repeats are clearly pathogenic, smaller repeat insertions have an unclear pathogenicity. The goal of this case series was to provide an insight into the characteristics of the 2-octapeptide repeat genetic variant and to provide insight into the risk for Creutzfeldt–Jakob disease in asymptomatic carriers. 2-octapeptide repeat insertion prion disease cases were collected from the National Prion Disease Pathology Surveillance Center (US), the National Prion Clinic (UK), and the National Creutzfeldt–Jakob Disease Registry (Australia). Three largescale population genetic databases were queried for the 2-octapeptide repeat insertion allele. Eight cases of 2-octapeptide repeat insertion were identified. The cases were indistinguishable from the sporadic Creutzfeldt–Jakob cases of the same molecular subtype. Western blot characterization of the prion protein in the absence of enzymatic digestion with proteinase K revealed that 2-octapeptide repeat insertion and sporadic Creutzfeldt–Jakob disease have distinct prion protein profiles. Interrogation of large-scale population datasets suggested the variant is of very low penetrance. The 2-octapeptide repeat insertion is at most a low-risk genetic variant. Predictive genetic testing for asymptomatic blood relatives is not likely to be justified given the low risk

    Prion 2016 poster abstracts

    Get PDF
    Until now, the 3-dimensional structure of infectious mammalian prions and how this differs from non-infectious amyloid fibrils remained unknown. Mammalian prions are hypothesized to be fibrillar or amyloid forms of prion protein (PrP), but structures observed to date have not been definitively correlated with infectivity. One of the major challenges has been the production of highly homogeneous material of demonstrable high specific infectivity to allow direct correlation of particle structure with infectivity. We have recently developed novel methods to obtain exceptionally pure preparations of prions from prion-infected murine brain and have shown that pathogenic PrP in these high-titer preparations is assembled into rod-like assemblies (Wenborn et al. 2015. Sci. Rep. 10062). Our preparations contain very high titres of infectious prions which faithfully transmit prion strain-specific phenotypes when inoculated into mice making them eminently suitable for detailed structural analysis. We are now undertaking structural characterization of prion assemblies and comparing these to the structure of non-infectious PrP fibrils generated from recombinant Pr

    Evaluating the causality of novel sequence variants in the prion protein gene by example

    Get PDF
    The estimation of pathogenicity and penetrance of novel prion protein gene (PRNP) variants presents significant challenges, particularly in the absence of family history, which precludes the application of Mendelian segregation. Moreover, the ambiguities of prion disease pathophysiology renders conventional in silico predictions inconclusive. Here, we describe 2 patients with rapid cognitive decline progressing to akinetic mutism and death within 10 weeks of symptom onset, both of whom possessed the novel T201S variant in PRNP. Clinically, both satisfied diagnostic criteria for probable sporadic Creutzfeldt-Jakob disease and in one, the diagnosis was confirmed by neuropathology. While computational analyses predicted that T201S was possibly deleterious, molecular strain typing, prion protein structural considerations, and calculations leveraging large-scale population data (gnomAD) indicate that T201S is at best either of low penetrance or nonpathogenic. Thus, we illustrate the utility of harnessing multiple lines of prion disease-specific evidence in the evaluation of the T201S variant, which may be similarly applied to assess other novel variants in PRNP

    A systematic investigation of production of synthetic prions from recombinant prion protein

    Get PDF
    According to the protein-only hypothesis, infectious mammalian prions, which exist as distinct strains with discrete biological properties, consist of multichain assemblies of misfolded cellular prion protein (PrP). A critical test would be to produce prion strains synthetically from defined components. Crucially, high-titre 'synthetic' prions could then be used to determine the structural basis of infectivity and strain diversity at the atomic level. While there have been multiple reports of production of prions from bacterially expressed recombinant PrP using various methods, systematic production of high-titre material in a form suitable for structural analysis remains a key goal. Here, we report a novel high-throughput strategy for exploring a matrix of conditions, additives and potential cofactors that might generate high-titre prions from recombinant mouse PrP, with screening for infectivity using a sensitive automated cell-based bioassay. Overall, approximately 20 000 unique conditions were examined. While some resulted in apparently infected cell cultures, this was transient and not reproducible. We also adapted published methods that reported production of synthetic prions from recombinant hamster PrP, but again did not find evidence of significant infectious titre when using recombinant mouse PrP as substrate. Collectively, our findings are consistent with the formation of prion infectivity from recombinant mouse PrP being a rare stochastic event and we conclude that systematic generation of prions from recombinant PrP may only become possible once the detailed structure of authentic ex vivo prions is solved

    Fundamental role of C1q in autoimmunity and inflammation

    Get PDF
    C1q, historically viewed as the initiating component of the classical complement pathway, also exhibits a variety of complement-independent activities in both innate and acquired immunity. Recent studies focusing on C1q\u27s suppressive role in the immune system have provided new insight into how abnormal C1q expression and bioactivity may contribute to autoimmunity. In particular, molecular networks involving C1q interactions with cell surface receptors and other ligands are emerging as mechanisms involved in C1q\u27s modulation of immunity. Here, we discuss the role of C1q in controlling immune cell function, including recently elucidated mechanisms of action, and suggest how these processes are critical for maintaining tissue homeostasis under steady-state conditions and in preventing autoimmunity

    Pin1 and neurodegeneration: a new player for prion disorders?

    Get PDF
    Pin1 is a peptidyl-prolyl isomerase that catalyzes the cis/trans conversion of phosphorylated proteins at serine or threonine residues which precede a proline. The peptidyl-prolyl isomerization induces a conformational change of the proteins involved in cell signaling process. Pin1 dysregulation has been associated with some neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and Huntington's disease. Proline-directed phosphorylation is a common regulator of these pathologies and a recent work showed that it is also involved in prion disorders. In fact, prion protein phosphorylation at the Ser-43-Pro motif induces prion protein conversion into a disease-associated form. Furthermore, phosphorylation at Ser-43-Pro has been observed to increase in the cerebral spinal fluid of sporadic Creutzfeldt-Jakob Disease patients. These findings provide new insights into the pathogenesis of prion disorders, suggesting Pin1 as a potential new player in the disease. In this paper, we review the mechanisms underlying Pin1 involvement in the aforementioned neurodegenerative pathologies focusing on the potential role of Pin1 in prion disorders

    The Distribution of Prion Protein Allotypes Differs Between Sporadic and Iatrogenic Creutzfeldt-Jakob Disease Patients

    Get PDF
    Sporadic Creutzfeldt-Jakob disease (sCJD) is the most prevalent of the human prion diseases, which are fatal and transmissible neurodegenerative diseases caused by the infectious prion protein (PrP(Sc)). The origin of sCJD is unknown, although the initiating event is thought to be the stochastic misfolding of endogenous prion protein (PrP(C)) into infectious PrP(Sc). By contrast, human growth hormone-associated cases of iatrogenic CJD (iCJD) in the United Kingdom (UK) are associated with exposure to an exogenous source of PrP(Sc). In both forms of CJD, heterozygosity at residue 129 for methionine (M) or valine (V) in the prion protein gene may affect disease phenotype, onset and progression. However, the relative contribution of each PrP(C) allotype to PrP(Sc) in heterozygous cases of CJD is unknown. Using mass spectrometry, we determined that the relative abundance of PrP(Sc) with M or V at residue 129 in brain specimens from MV cases of sCJD was highly variable. This result is consistent with PrP(C) containing an M or V at residue 129 having a similar propensity to misfold into PrP(Sc) thus causing sCJD. By contrast, PrP(Sc) with V at residue 129 predominated in the majority of the UK human growth hormone associated iCJD cases, consistent with exposure to infectious PrP(Sc) containing V at residue 129. In both types of CJD, the PrP(Sc) allotype ratio had no correlation with CJD type, age at clinical onset, or disease duration. Therefore, factors other than PrP(Sc) allotype abundance must influence the clinical progression and phenotype of heterozygous cases of CJD

    Folding kinetics of the human prion protein probed by temperature jump

    No full text
    Temperature-jump perturbation was used to examine the relaxation kinetics of folding of the human prion protein. Measured rates were very fast (≈3,000 s−1), with the extrapolated folding rate constant at ≈20 °C in physiological conditions reaching 20,000 s−1. By a mutational analysis of core residues, we found that only 2, on the interface of helices 2 and 3, have significant ϕ-values in the transition state. Interestingly, a mutation sandwiched between the above 2 residues on the helix–helix contact interface had very little effect on the overall free energy of folding but led to the formation of a monomeric misfolded state, which had to unfold to acquire the native PrPC conformation. Another mutation that led to a marked destabilization of the native fold also formed a misfolded intermediate, but this was aggregation-prone despite the native state of this mutant being soluble. Taken together, the data imply that this fast-folding protein has a transition state that is not compact (m value analysis gives a βt value of only 0.3) but contains a developing nucleus between helices 2 and 3. The fact that a mutation in this nucleus had a negligible effect on stability but still led to formation of aberrant conformations during folding implies an easily perturbed folding mechanism. It is notable that in inherited forms of human prion disease, where point mutations produce a lethal dominant condition, 20 of the 33 amino acid replacements occur in the helix-2/3 sequence
    corecore