5 research outputs found

    Biological Containment of Genetically Modified<i> Bacillus subtilis</i>

    Get PDF
    ABSTRACT Genetic manipulation of bacterial spores of the genus Bacillus has shown potential for vaccination and for delivery of drugs or enzymes. Remarkably, proteins displayed on the spore surface retain activity and generally are not degraded. The heat stability of spores, coupled with their desiccation resistance, makes them suitable for delivery to humans or to animals by the oral route. Despite these attributes, one regulatory obstacle has remained regarding the fate of recombinant spores shed into the environment as viable spores. We have addressed the biological containment of GMO spores by utilizing the concept of a thymineless death, a phenomenon first reported 6 decades ago. Using Bacillus subtilis , we have inserted chimeric genes in the two thymidylate synthase genes, thyA and thyB , using a two-step process. Insertion is made first at thyA and then at thyB whereby resistance to trimethoprim enables selection of recombinants. Importantly, this method requires introduction of no new antibiotic resistance genes. Recombinant spores have a strict dependence on thymine (or thymidine), and in its absence cells lyse and die. Insertions are stable with no evidence for suppression or reversion. Using this system, we have successfully created a number of spore vaccines as well as spores displaying active enzymes. IMPORTANCE Genetic manipulation of bacterial spores offers a number of exciting possibilities for public and animal health, including their use as heat-stable vehicles for delivering vaccines or enzymes. Despite this, one remaining problem is the fate of recombinant spores released into the environment where they could survive in a dormant form indefinitely. We describe a solution whereby, following genetic manipulation, the bacterium is rendered dependent on thymine. As a consequence, spores if released would produce bacteria unable to survive, and they would exhibit a thymineless death due to rapid cessation of metabolism. The method we describe has been validated using a number of exemplars and solves a critical problem for containing spores of GMOs in the environment. </jats:p

    The Spore Coat Protein CotE Facilitates Host Colonization by Clostridium difficile

    Get PDF
    Clostridium difficile infection (CDI) is an important hospital-acquired infection resulting from the germination of spores in the intestine as a consequence of antibiotic-mediated dysbiosis of the gut microbiota. Key to this is CotE, a protein displayed on the spore surface and carrying 2 functional elements, an N-terminal peroxiredoxin and a C-terminal chitinase domain. Using isogenic mutants, we show in vitro and ex vivo that CotE enables binding of spores to mucus by direct interaction with mucin and contributes to its degradation. In animal models of CDI, we show that when CotE is absent, both colonization and virulence were markedly reduced. We demonstrate here that the attachment of spores to the intestine is essential in the development of CDI. Spores are usually regarded as biochemically dormant, but our findings demonstrate that rather than being simply agents of transmission and dissemination, spores directly contribute to the establishment and promotion of disease

    Mucosal antibodies to the C terminus of toxin A prevent colonization of Clostridium difficile

    Get PDF
    Mucosal immunity is considered important for protection against Clostridium difficile infection (CDI). We show that in hamsters immunized with Bacillus subtilis spores expressing a carboxy-terminal segment (TcdA26-39) of C. difficile toxin A, no colonization occurs in protected animals when challenged with C. difficile strain 630. In contrast, animals immunized with toxoids showed no protection and remained fully colonized. Along with neutralizing toxins, antibodies to TcdA26-39 (but not to toxoids), whether raised to the recombinant protein or to TcdA26-39 expressed on the B. subtilis spore surface, cross-react with a number of seemingly unrelated proteins expressed on the vegetative cell surface or spore coat of C. difficile. These include two dehydrogenases, AdhE1 and LdhA, as well as the CdeC protein that is present on the spore. Anti-TcdA26-39 mucosal antibodies obtained following immunization with recombinant B. subtilis spores were able to reduce the adhesion of C. difficile to mucus-producing intestinal cells. This cross-reaction is intriguing yet important since it illustrates the importance of mucosal immunity for complete protection against CDI
    corecore