
 
 

 

Biological Containment of Recombinant Spores 

and Dissemination of Pathogenic Spores 

 

 

 

A thesis submitted for the degree of Doctor of Philosophy 

 

By 

 

Siamand Hosseini 

(September 2014-September 2018) 

 

 

 

 

School of Biological Sciences 

Royal Holloway, University of London, UK 

 

 



 
 

 

 

 

 

 

 

 

 

 

FOR MY DAD 

 

 

 

 

 

 

 

 

 

 

 



 
 

Abstract 

Genetic manipulation of bacterial spores of the genus Bacillus has shown potential 

for vaccination and for delivery of drugs or enzymes. Remarkably, proteins displayed on the 

spore surface retain activity and generally are not degraded. The heat stability of spores 

coupled with their desiccation resistance makes them suitable for delivery to humans or to 

animals by the oral route. Despite these attributes one regulatory obstacle has remained 

regarding the fate of recombinant spores shed into the environment as viable spores. We 

have addressed the biological containment of spore GMOs by utilizing the concept of a 

‘thymine-less death’, a phenomenon first reported six decades ago. Using Bacillus subtilis, 

we have inserted chimeric genes in the two thymidylate synthase genes, thyA, and thyB, 

using a two-step process. Insertion is made first at thyA followed by thyB where resistance 

to trimethoprim enables selection of recombinants. Importantly, this method requires the 

introduction of no new antibiotic resistance genes. Recombinant spores have a strict 

dependence on thymine (or thymidine) and in their absence cells lyse and die. Insertions are 

stable with no evidence for suppression or reversion. Using this system, we have successfully 

created a number of spore vaccines as well as spores displaying active enzymes. 

 

Despite numerous attempts to reduce the risk of transmission of C. difficile still this 

nosocomial infection presents a considerable problem. BclA1 is a glycosylated protein 

expressed on the exosporium layer of C. difficile spores. So far two types of BclA1 have 

been identified, a full-length and truncated BclA1 encoding for a 693 and 48 amino acids 

protein respectively. Previously shown that BclA1 play a role in colonisation as a mutant 

strain, CD630, that had a deleted BclA1 required 2-logs higher spores to colonise in mice in 

comparison to the isogenic wild-type strain. In this work, the study on BclA1 has expanded 

by first Identify different types of bclA1 gene within different ribotypes and second test 



 
 

different ribotypes with different bclA1 for colonisation. The in vivo result shows that 

different non-isogenic strains of C. difficile, regardless the type of BclA1 they have, needed 

100 spores to colonise in mice. Interestingly R176, a hypervirulent strain of C. difficile 

needed a higher number of spores to colonise. The hypervirulent strain also showed to 

produces more spores than other strains. The findings of this work are that, first, BclA1 may 

not play a role in colonisation within non-isogenic strains, and second, higher sporulation of 

hypervirulent C. difficile strains, possibly is a reason for faster dissemination and high 

incident despite reduced ability to colonise.    
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CHAPTER 1 

INTRODUCTION 

1.1 Sporulation of Bacillus subtilis  

Bacillus subtilis (B. subtilis), also known as hay bacillus or grass bacillus, was first 

discovered in 1835 by Christian Gottfried Ehrenberg. It was initially named Vibrio subtilis 

and was renamed by Ferdinand Cohn (Cohn, 1872). It is a Gram-positive spore former and 

aerobic bacterium commonly found in soil (Siala and Gray, 1974, Kunst et al., 1997). It is 

rod-shaped and catalase positive, and although it is considered as an obligate aerobic 

bacterium, it can also grow and function anaerobically in the presence of nitrate and nitrite 

(Stewart, 1988, Ramos et al., 1995). B. subtilis is not toxic or pathogenic and it is considered 

safe for human consumption (Sorokulova et al., 2008). The size of B. subtilis cells is 4-10 

μm long and 0.25–1.0 μm in diameter (Allen et al., 2014). It can divide symmetrically, 

resulting in two daughter cells, or asymmetrically, resulting in the formation of an endospore 

(Grossman and Losick, 1988). 

 

Spore formation is triggered by changes in environmental conditions that can be 

lethal to vegetative forms, e.g. nutrient limitation, changes in temperature, desiccation, and 

exposure to noxious chemicals and radiation. Once the environment is unfavourable for 

survival, B. subtilis vegetative cells will enter a pathway where the cells divide 

asymmetrically in the pole of the bacterium to form two different compartments, a smaller 

forespore and a larger mother cell. The mother cell nurtures the developing forespore that is 
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destined to become a spore. At the early stage of sporulation, the mother cell and forespore 

lie side by side. However, later in the development, the mother cell entirely swallows the 

forespore by migrating its membrane around the spore and creating a cell within a cell. The 

inner forespore will then mature and become a spore, and eventually, the spore will liberate 

itself from the mother cell by lysis (Figure 1.1) (Hilbert and Piggot, 2004). The shape of a 

mature B. subtilis spore is ellipsoidal, and it is approximately 1.2 m in length (Ricca and 

Cutting, 2003). Spores can stay inert and survive indefinitely in the environment, and once 

the proper environmental conditions return, they can germinate and produce vegetative cells 

(Cano and Borucki, 1995a). 

 

1.2 B. subtilis spore structure  

B. subtilis spores are made of three different layers, and these layers can be visualised 

using transmission electron microscopy. The most inner and central part of the spore is the 

core that contains the chromosome. The internal core is surrounded by a thin layer of 

peptidoglycan called the cortex, which is involved in the dehydration state of spores. The 

next layer surrounding the cortex is called the coat layer, which sub-divides into an inner 

coat and an outer coat (Figure 1.2). The inner coat is a thin layer approximately 70 nm wide, 

though the outer coat is thicker and ranges from 70 to 200 nm wide (Driks, 1999).  

 

1.2.1 Spore coat  

The coat layer is a proteinaceous shell surrounding the spore that is vital for 

protection and survival of the spore. This layer is build up of components that synthesised, 

during forespore maturation, in the mother cell compartment (Henriques, 2004, Kim et al., 

2006). The coat layer consists of a lamella-like inner coat layer and an electron-dense outer 

coat  layer.  It  protects  the  spores  against  environmental  insults  including  lytic  enzymes,  
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oxidizing agents and toxic molecules (Setlow, 2003, Setlow, 2011). A large number of spore 

coat proteins, >70 proteins, have been identified and only a small number of these proteins 

are essential for coat morphogenesis including CotX, CotY, CotZ and CotE. The coat 

architecture is severely disrupted if any of these morphogenic proteins are absence 

(McKenney et al., 2013). CotE is a 181-amino-acid morphogenic  protein  required  for the 

Figure 1.1: Schematic diagram of different stage involves in spore formation. In 

stage 0 (vegetative cell), the DNA will replicate, and the cell contains two complete 

chromosomes. The two chromosomes must be segregated into two cells. In stage I, the 

two chromosomes are remodelled by an axial filament, where they form an elongated 

filament that stretches across the long axis and anchors to the pole of each axis. Stage II 

is where the asymmetric division occurs that divides the cell into a small forespore and 

large mother cell. The DNA translocase will then pump the remaining chromosome into 

the forespore. The mother cell (stage III) will fully swallow the forespore by migrating 

its membrane around the forespore. Here, the forespore can mature into spore. Synthesis 

of cortex and spore coat in stages IV and V respectively will then take place. Stage VI is 

where the spore is fully matured, with a cortex and coat layer, and has acquired its full 

resistance properties. Finally, in stage VII, the mother cell will lyse, liberating the spore 

from the environment. 

 

 

0: Vegetative cell I: Axial Filamentation II: Asymmetric Division 

III: Engulfment 

IV: Cortex Synthesis  V: Coat Synthesis VI: Maturation 

VII: Mother-cell lysis 
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assembly of the coat’s outer layer of the endospore (Zheng et al., 1988, Bauer et al., 1999, 

Driks, 1999). It also regulates the expression of different coat proteins such as CotB, CotC 

and CotH (Zheng et al., 1988). The spores of B. subtilis strain that have mutated cotE (unable 

to express functional CotE) lack the electron-dense outer coat and thus show higher 

sensitivity to lysozyme, that has peptidoglycan-degrading property (Nash et al., 2006) and 

targets the cortex, compared to wild-type spores that have both an inner and outer coat 

(Driks, 1999). The coat layer also protects the spore from being digested once it has been 

ingested by other microorganisms. For example, when wild-type B. subtilis spores (Strain 

PS533) and spores from a cotE mutant strain were incubated with Tetrahymena thermophile 

– which consumes bacteria through ingestion – there was no decrease in wild-type spore titer 

after 48 hours of incubation, whereas cotE mutant spores showed a 100-fold reduction in 

spore titer (Klobutcher et al., 2006). Moreover, the coat layer plays a role in changing the 

state of the spore form dormancy back to a vegetative form through a process called 

germination. The correct assembly of the inner coat layer mainly depends on a protein called 

GerE. gerE mutant spores lack the inner coat and have a severe defect in the outer coat layer 

(Driks, 1999). Spores of the cotE mutant strain and spores of the strain with mutant gerE are 

highly deficient in germination compared to their wild-type strain (James and Mandelstam, 

1985, Driks, 1999).  

 

1.2.2 Spore coat proteins 

25% of total proteins of B. subtilis spores are coat proteins, which make up 10% of 

the total weight of a single dry spore. At least 70 different proteins on both layers of the 

spore coat of B. subtilis have been identified (Henriques and Moran, 2007). CotA (65 kDa), 

CotB (59 kDa), CotG (24 kDa), CotC (11 kDa), and CotF (8 kDa) are the principle 

polypeptides that belong to the outer coat layer. CotB, CotC, and CotG are possibly the most 
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abundant proteins on the outer coat layer, and their assembly depends on the CotE protein 

(Potot et al., 2010). Some of these proteins were shown to be useful for a strategy referred 

to as the microbial cell surface display system , wherein their role as carrier proteins is to 

display a heterologous protein on the spore surface (Ricca and Cutting, 2003). 

  

1.3 Microbial cell surface display  

Microbial cell surface display system allows for proteins and peptides to be displayed 

from different sources on the surface of living cells or spores by genetically fusing them with 

anchoring motifs. Numerous strategies for presenting proteins or peptides on microbial cell 

surfaces have been established since the first report of surface display in 1985, wherein small 

proteins were fused with the phage protein pIII and expressed on the surface of bacteriophage 

(Smith, 1985). Since then, expressing peptides or proteins has been performed on the surface 

of both prokaryotes and eukaryotes such as bacteria, yeast, and insect and mammalian cells. 

Both Gram-negative and Gram-positive bacteria can be used to display proteins on their 

surface (Desvaux et al., 2006, van Bloois et al., 2011). The display of proteins at the cellular 

surface used in a large number of biomedical and biotechnical applications proved their 

effectiveness in the development of bioadsorbents, biocatalysts, and the delivery of drugs 

(Han and Lee, 2015). Microbial cell surface display system provides additional 

characteristics to the host without affecting the cell metabolism and causing metabolic 

abnormalities. Display proteins, as well as single or multiple epitopes on the cell or spore 

surfaces, can be used to develop recombinant vaccines that can be taken orally (Kramer et 

al., 2003). Additionally, bacteria can be engineered to express and display recombinant 

enzymes on their surface; therefore, they can be used as biofactories with a large number of 

biotechnological applications (Jose et al., 2002, Jose and von Schwichow, 2004). Currently, 

spore-based display systems, especially those using B. subtilis spores, have found many 
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applications (Samuelson et al., 2002, Potot et al., 2010, Permpoonpattana et al., 2011a). 

Examples of spore-based display are display proteins such as urease B that has a potential to 

be used as oral vaccination against Helicobacter pylori (Zhou et al., 2015a) or display 

enzymes such as phytase that can be used in animal feed for the purpose of better digestion 

(Potot et al., 2010).   

 

The surface display consists of a carrier protein that is anchored on the cell or spore 

surface, a heterologous protein, and a host. Successful expression and presentation of any 

protein or peptide highly depends on the type of anchoring motif used. The choice of 

incorrect anchoring can destabilise the cell envelope and therefore cause growth defects 

(Han and Lee, 2015). An efficient signalling peptide, strong anchoring motifs, and resistance 

to protease are the necessary features of a successful carrier protein. The signalling peptide 

is vital in allowing the fusing protein to pass through the inner membrane. Avoiding 

detachment from the surface of the cell or spore enables the carrier protein to have a strong 

anchoring motif. Finally, the presence of proteases in the periplasmic space or extracellular 

media requires a carrier protein to be protease resistant (Ricca and Cutting, 2003).  

 

1.4 Engineering the B. subtilis spore coat 

Engineering B. subtilis spores to express a heterologous protein on its spore surface 

was first shown by Isticato and colleagues (2001). The strategy for producing recombinant 

spores is illustrated in Figure 1.2. To display a heterologous protein on the surface of B. 

subtilis spores, two coat proteins, cotB and cotC, were initially used as the carrier protein, 

since these proteins were not necessary for the formation of typical spores. To be able to 

display a peptide or protein fused to cotC and cotB, two points must be considered. First and 

foremost, for the  construction of a  translational  fusion, the promoter and  gene  of  cotB  or  



Chapter 1: Introduction 

 

7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cotC must be used. Second, the fusion gene must be integrated into the coding sequence of 

a non-essential gene (Ricca and Cutting, 2003). However, it is  also  possible to incorporate 

the fusion into the coding sequence of an essential gene if the product of the mutated gene 

is supplemented to the growth media in which the bacteria grow (Iwanicki et al., 2014). The 

correct assembly of a chimeric protein depends on which part of the carrier protein the 

heterologous passenger protein is genetically fused to. The protein can be fused to the N-

terminus, C-terminus, and/or the middle (sandwich fusion) of the carrier protein. However, 

in B. subtilis, when 459 amino acids of a C-terminal fragment of the tetanus toxin (TTFC), 

51.8 kDa, was fused to the C-terminal of cotB, it failed to assemble on the surface of the 

Figure 1.2: Spore surface display of an antigen. The internal core (light green) is 

encased by the cortex (light blue), and the cortex is surrounded by the coat layer, which 

is subdivided into the inner coat (dark green) and outer coat (yellow). An antigen protein 

(dark blue) can be expressed and displayed on the spore surface by fusing it to a spore 

coat protein (brown).  
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spore correctly (Ricca and Cutting, 2003). It was suggested that the misfolded protein could 

be due to three 25-amino-acid repeats that are present in the C-terminus of CotB. The 

problem was bypassed by deleting the three 25-amino-acid repeats (CotBΔ105 have 275 

amino acids compared to the wild-type, which has 380 amino acids), and when TTFC was 

fused to it (CotBΔ105-TTFC), it resulted in the correct assembly of the protein on the spore 

surface. In addition, a fusion of TTFC to the N-terminus and the middle of CotBΔ105 

showed the correct assembly of TTFC on the spore surface. This has proven that to create a 

stable fusion with CotB as a carrier protein, the three 25-amino-acid repeats that make up 

half of the C-terminus of CotB must be removed. CotC is another protein that can be used 

as an anchoring motif. This was shown by Ricca and Cutting (2003), who fused TTFC to the 

C-terminus of CotC, which resulted in the correct assembly on the spore surface. 

 

1.5 Applications of B. subtilis wild-type and recombinant spores  

1.5.1 Probiotics  

Probiotics are living microorganisms that are non-toxic, non-pathogenic and resistant 

to hydrolysis by mammalian enzymes, which can be formulated into various products, 

including drugs, foods, and dietary supplements (Heller, 2001). It has been shown that they 

can provide health benefits to the host by improving colonic balance, produce substances 

with systemic effects, and improve immune function (Guo et al., 2017). Probiotics can 

produce a variety of components, such as lactic acid by fermenting sugar molecules, 

peptides, acetaldehydes and bacteriocins that can prevent or inhibit the growth of pathogenic 

bacteria (Holzapfel et al., 2001, Gorbach, 2002). These compounds, especially peptides and 

bacteriocins, are involved in increasing the permeability of pathogenic cells, leading to 

depolarisation of the membrane and therefore cell death (Simova et al., 2009). Two genera, 

Lactobacillus and Bifidobacterium, are commonly used as probiotics against pathogens in 
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the gut. However, they are limited through their sensitivity to temperature, gastric acid and 

slow growth (Del Piano et al., 2008). Hence, it is necessary to search for probiotics with 

better efficiency and resistance to hydrochloric acid in the stomach, which protects the body 

from pathogens.  

 

Bacillus species, especially B. subtilis and some of its close relatives, have been 

widely used as probiotics. B. subtilis spores are robust and resistant to stomach hydrochloric 

acid, making them attractive as probiotics. As these spores arrive in the small intestine, they 

germinate and proliferate once they sense that the environment is favourable, and it is here 

that they convey benefits to the host. They prevent intestinal inflammation, have an 

antidiarrheal effect, produce antimicrobial substances against pathogens, exclude pathogens, 

and normalise colonic flora (Mazza, 1994, Foligné et al., 2012, Ramachandran et al., 2014). 

B. subtilis is also recognised as safe for human consumption by the Food and Drug 

Administration (FDA) and the European Food Safety Authority (EFSA) (Suva et al., 2016). 

These advantages make B. subtilis one of the most intriguing probiotic species for treatment  

of different clinical diseases.  

 

B. subtilis spores as probiotics have benefits for both human and animals. They have 

been used to treat many conditions in humans caused by pathogens or food allergies. Mice 

experimentally infected with Clostridium difficile (C. difficile), a pathogen that causes 

diarrhoea, when dosed with probiotic B. subtilis spores PXN21 both pre and post infection, 

showed attenuated symptoms of the disease, although the administration of PXN21 spores 

post infection produced better suppression of the C. difficile infection (CDI). The mechanism 

of protection was suggested to be through the innate immunity by upregulation of the Toll-

like receptor 2 (TLR2) once the PXN21 spore germinated and the peptidoglycan was carried 
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by the cortex, inducing the release of TLR2 (Colenutt and Cutting, 2014). Clostridium 

perfringens is a pathogenic bacterium that causes a common poultry disease called necrotic 

enteritis. This condition has a considerable effect on the profitability of commercial broiler 

chicken production. Traditionally, to overcome the pathogenic impact of necrotic enteritis, 

antibiotic feed supplements were administered. However, the growth-promoting antibiotic 

was restricted in the European Union; therefore, the search for an alternative treatment was 

necessary. In one study, B. subtilis spores of strain QST 713 were tested to determine their 

effect in broiler chickens that had necrotic enteritis (Tactacan et al., 2013). The authors 

showed that the necrotic enteritis-infected broiler chickens that were not dosed with B. 

subtilis QST 713 spores had high mortality, whereas the necrotic enteritis-infected birds that 

were administered the QST 713 spores had a substantially reduced mortality rate. The group 

believe that the reason for that could be due to development of immunological tissue in the 

ileal mucosa of broiler chickens dosed with B. subtilis spores as reported by Molnár et al. 

(2011) increased gut-associated lymphoid tissue development paralleled the increasing B. 

subtilis concentration in the feed. 

 

1.5.2 Recombinant spore vaccine  

Currently, there is considerable interest in recombinant spores that offer benefits as 

a live vaccine vector. The intestinal mucosa is continuously exposed to foreign antigens and 

is an essential line of defence against the enteric pathogen. Vaccination is a method of 

triggering an immune response in an individual to promote development of adapted 

immunity to microbes. Since most pathogens first infect the mucosal surface, there is an 

increasing interest in the development of vaccines that induce protective mucosal immunity 

via mucosal routes. So far, most systemically administered vaccines are ineffective against 

mucosal infections. An ideal mucosal vaccine should provide protection both systemically 
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and at the mucosal delivery site. Mucosal secretory Immunoglobulin A (SIgA) and systemic 

immunoglobulin G (IgG) are two types of antibodies that are produced by an immune 

response via mucosal vaccination (Amuguni and Tzipori, 2012). SIgA is the primary 

antibody found at the mucosal site and predominantly exists in dimeric form, whereas IgG 

is found in peripheral blood and tissue spaces. In a mucosal system, the primary effector for 

adaptive immune defence is SIgA. Recently, it has been shown that mucosal immunity and 

especially the role of SIgA is essential for protection against CDI (Hong et al., 2017b). 

Another advantage of mucosal vaccines is that they do not require injection and are easily 

administered, e.g. via the nasal route. An efficient delivery system is essential for the 

development of mucosal vaccines. B. subtilis spores are used in the generation of the orally 

administered mucosal vaccine by acting as a platform for the presentation of heterologous 

proteins (as antigen) on their spore surface, and this species has attracted noticeable attention 

(Batista et al., 2014, Ricca et al., 2014).  

 

Many animal studies have been conducted that use the recombinant B. subtilis spore 

as a mucosal vaccine. Tuberculosis, caused by a pathogen called Mycobacterium 

tuberculosis (M. tuberculosis), is an infectious disease that mainly affects the lungs and has 

high morbidity and mortality in different parts of the world. A vaccine called Bacillus 

Calmette-Guérin (BCG) was designed to protect against tuberculosis through the attenuation 

of live bovine tuberculosis bacillus, Mycobacterium bovis, which is unable to cause disease 

in humans (Simona and Mihaescu, 2013). The BCG vaccine was developed more than 90 

years ago, and it is still the only vaccine available today against tuberculosis. However, BCG 

is incapable of creating full protection against the disease (Colditz et al., 1995). Thus, 

development of a more efficient vaccine was necessary. Using the B. subtilis spore as a 

delivery vehicle, a strategy was developed to produce recombinant spores, in which a 

https://en.wikipedia.org/wiki/Mycobacterium_bovis
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significant immunodominant antigen, Ag85B from M. tuberculosis was displayed on the 

spore surface. Mice that were dosed with recombinant spores showed an increasing level of 

the Ag85B-specific IFN- producing cell and a higher level of Ag85B-specific IgG 

antibodies in the serum compared to mice that were dosed with naked wild-type spores (Das 

et al., 2016). IFN- has been shown to prevent the growth and replication of M. tuberculosis 

(Szabo et al., 2002). Therefore, the delivery of the M. tuberculosis antigen on the surface of 

the B. subtilis spore proves that it can create an immune response, and this can be a potential 

vaccine strategy against TB. Recombinant B. subtilis spores can also be used as a treatment 

for food allergies. Immunised peanut allergic C3H/HeJ mice with B. subtilis spores, which 

display the mucosal adjuvant cholera toxin B subunit, fused with the peanut major allergen 

Ara h2 tp, showed protection against peanut-induced anaphylaxis. Results indicated that the 

immunotherapeutic effect of peanut-specific IgA was induced by the recombinant spores 

(Zhou et al., 2015b).  

 

1.5.3 Recombinant spores as a drug delivery vehicle  

Despite the potential of using recombinant spores to express drugs, it has not 

generated much attention for specific disease treatment. B. subtilis can be used to deliver 

anti-tumour compounds. Nguyen and colleagues (2013) constructed killed Bacillus spores 

that could be engineered to display cetuximab, which is a monoclonal antibody that 

recognises the epidermal growth factor receptor expressed on cancer cells. These spores 

could therefore be loaded with an anti-cancer drug called paclitaxel on their surface and 

could specifically target  cancer cells  in vitro, resulting  in inhibition of  cancer cell growth  

(Nguyen et al., 2013).  
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1.5.4 Other applications of recombinant B. subtilis spores 

Industry plays a vital role in developing the world, yet it can result in various negative 

consequences such as water pollution and gases. It can also release different types of 

hazardous chemicals and heavy metals such as lead, mercury, zinc, silver, gold, cadmium, 

copper, arsenic, and chromium, which can be hazardous to most living creatures. To 

overcome these problems, several technologies have been developed, including 

precipitation-dissolution, ion-exchange, and reverse osmosis. However, due to hazardous 

sludge, removal of specific ions, high costs, and high energy requirements (Ahalya et al., 

2003), alternative methods are required. The best way to overcome these problems is to use 

enzymes that can degrade toxic pollutants. Many enzymes from fungi, bacteria, and plants 

are involved in the biodegradation of poisonous and carcinogenic pollutants (Karigar and 

Rao, 2011). For instance, the enzyme nitrilase converts nitriles, which are toxic and can 

pollute water, into non-toxic products, including carboxylic acid, in the grass (Gong et al., 

2012). Some of the disadvantages of using enzymes in industrial applications are the high 

cost of isolation and purification and sensitivity to various denaturing conditions such as pH 

and temperature since enzymes are proteins. Additionally, most enzymes dissolve in water, 

which causes product contamination; therefore, their recovery in an active form for reuse is 

not feasible (Homaei et al., 2013). Immobilisation of enzymes is a technique that fixes 

enzymes to solid supports (van de Velde et al., 2002). Immobilisation makes the enzymes 

more robust and increases their resistance to environmental changes that result in their 

denaturing. Several studies have reported that B. subtilis spores can be used to immobilise 

enzymes (Potot et al., 2010, Chen et al., 2015) they can re-germinate and re-sporulate both 

in vitro and in the gastrointestinal tract (GI-tract), the active enzymes can be displayed 

continuously (Tam et al., 2006). Recombinant B. subtilis spores have become a fundamental 

tool for the processes of bioremediation. If histidine amino acids are displayed on the spores 
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surface, they can absorb heavy metals such as nickel significantly more effectively than the 

wild-type spores (Hinc et al., 2010a). Finally, the spore surface expression of feed enzymes 

can potentially improve the digestion of animals. For example, xylanases, amylases, and 

gluconases that are from the carbohydrase class help to break down carbohydrates such as 

starch and fibre into simple sugars in the guts of animals (Jacela et al., 2009). 

 

1.6 Regulatory issues regarding the use of recombinant spores 

Organisms with changes in their gene pool that cannot occur naturally are regarded 

as genetically modified organisms (GMOs). GMOs include genetically modified (GM) 

animals, microorganisms, and plants. The deliberate modification and the resulting entities, 

besides the benefits, have always been considered a threat both to humans and the 

environment. For instance, GMOs can be used in agriculture as a biopesticide, nitrogen 

fixative, or plant growth promoter. However, when introduced into the environment, they 

can have environmental consequences and have more pronounced ecological roles in 

comparison to wild-type organisms (Heuer and Smalla, 2007). For example, weeds are a 

constant problem in farming. To overcome this problem through the use of genetic 

engineering, herbicides and pesticide-tolerant plants were produced. However, the chemical 

pesticides and herbicides can potentially result in the evolution of pesticides and herbicide‐

resistant pests and weeds (Owen and Zelaya, 2005). Therefore, an increased quantity or 

higher strength pesticides and herbicide need to be used to eliminate them. This could cause 

damage to biodiversity and ecosystem health (Casida, 2009, Carvalho, 2017).   

 

In addition, as a result of DNA modification, it is possible that the organism acquires 

other characteristics, and this may not be limited to a feature of the replaced gene (Prescott 

et al., 2005). It is crucial to ensure that when GMOs are released into nature, they are not 
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harmful to both humans and the environment. Thus, the environmental risks that may be 

caused by recombinant organisms once they are introduced into the natural environment 

must be assessed.  

 

Insertion of a single gene into a microorganism genome could affect the entire 

genome of the host, resulting in different unintended characteristics, and not all these 

features can be recognised at the same time. Prediction of all types of risks after a gene 

insertion is difficult. Some examples of the different kinds of threats identified when using 

GMOs are: i) the possibility of GMOs cross-breeding with the wild-type, resulting in 

disappearance of the novel traits in the wild-type organism; ii) GMOs can have an advantage 

over other organisms as a result of faster growth, which could possibly allow them to spread 

(become invasive) into a new habitat and cause damage to the economy and ecology; iii) 

horizontal transfer, via transformation or conjugation, of recombinant genes to other 

microorganisms; this can be particularly problematic when an antibiotic-resistance gene is 

transferred or conjugated to a pathogen that can cause disease in human sand animals 

(Bennett et al., 2004); iv) GMOs can have adverse effects on human or animal health by 

increasing the pathogenicity or emergence of new diseases. 

 

The scientific panel on GMOs (EFSA GMO) published a risk assessment guideline 

in 2006. It was used to identify and evaluate the potential adverse effects of GM 

microorganisms on humans, animals, and the environment and whether these adverse effects 

are direct or indirect and immediate or delayed (Committee, 2007).  
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1.7 C. difficile infection  

1.7.1 Antibiotics and CDI 

Approximately 15% of hospitalised patients treated with antibiotics will develop 

antibiotic-associated diarrhoea, and it is estimated that C. difficile is responsible for 15% to 

20% of the cases (Hurley and Nguyen, 2002, Beaugerie et al., 2003). C. difficile is a spore-

forming, Gram-positive, and strictly anaerobic bacterium that is the most common cause of 

antibiotic-associated diarrhoea in developed countries. C. difficile infection (CDI) is a toxin-

mediated intestinal disease with clinical features ranging from asymptomatic colonisation, 

mild to severe diarrhoea in the acute form, and pseudomembranous colitis (Beaugerie et al., 

2003, Khan and Elzouki, 2014, Tao et al., 2016). The significant risk factor for developing 

CDI is antibiotic treatment, though other factors such as advanced age and weakened 

immune system due to conditions such as diabetes could also increase the susceptibility of 

the host to the disease (Cloud and Kelly, 2007, Rupnik and Janezic, 2016). Approximately 

500,000 and 18,000 cases of CDIs are reported each year in the USA and England 

respectively (Borren et al., 2017).  

 

The human gut microbiota consists of a complex population of microbial species that 

play a vital role in human health and disease. A healthy microbiota is required to resist and 

prevent the colonisation of pathogens in the host gut. More than 500 species exist in the 

human gut, with healthy flora that prevents C. difficile from establishing disease. A decrease 

in indigenous intestinal microflora such as lactobacilli and bifidobacterial strains that have 

an antagonistic role against C. difficile, could create an empty environment for C. difficile to 

fill, colonise, and cause infection (Naaber et al., 2004, Wei et al., 2018). The use of broad-

spectrum antibiotics that are used to treat a primary infection will affect the host microbiota, 

causing damage and disruption of protective microbiota and increase susceptibility of the 
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host to infection via opportunistic bacterial pathogens. Therefore, two events are required 

for CDI to occur; the first is the disruption of the protective gut microbiota, and the second 

is the acquisition of C. difficile spores, which are resistant to the antibiotics that are taken for 

treating the primary infection.  

 

Microbiota can prevent C. difficile colonisation through various mechanisms. To 

cause the disease, the spores of C. difficile must germinate in the host GI-tract. In the GI-

tract, the presence of primary and secondary bile acids can hugely affect the germination and 

the growth of C. difficile (Figure 1.3). For example, chenodeoxycholate, one of the major 

primary bile acids, can inhibit C. difficile spore germination (Sorg and Sonenshein, 2009). 

Clostridium scindens (C. scindens), a commensal species, is highly associated with 

resistance to CDI by encoding dehydroxylating enzymes, which are essential to converting 

primary bile acid into secondary bile acids that have inhibitory effects on C. difficile. The C. 

scindens inhibitory effect on C. difficile is completely abolished by the addition of 

cholestyramine, which is a bile acid sequestrant to the culture (Buffie et al., 2015). This 

indicates that the mediators of C. difficile growth inhibition were likely the secondary bile 

acids (Figure 1.3). In the gut, commensal bacteria exist that produce sialidase, an enzyme 

that cleaves the sugars from glycosylated proteins. The glycosylated proteins are bound to 

the epithelial cell membrane, and cleaving them by sialidases will result in releasing free 

sialic acid into the lumen (Sonnenburg et al., 2005). In addition, short-chain fatty acids, such 

as succinate, are produced from complex carbohydrates, specifically fibre and resistant 

starches, which are broken down by primary fermenters (Wong et al., 2006). Commensal 

bacteria rapidly consume these metabolites as energy sources. C. difficile is also able to 

metabolise succinate and sialic acid since it has genes for both succinate transporter and 

sialic acid  catabolism. Thus, disrupting the commensal  bacteria  allows C. difficile to have  
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 B 

Figure 1.3: Commensal bacteria mediated defences against C. difficile. A) the conversion of primary bile acids into secondary bile acids 

by intact microbiota results in several disturbances that are toxic to C. difficile vegetative cells and inhibit its growth. Conversion of 

carbohydrate into small-chain fatty acids (SCFA), including succinate, is done by fermenting commensal bacteria. Commensal bacteria 

encode sialidases, which cleaves the sugar molecule from the glycosylated proteins that are attached to epithelial cells into free sialic acids 

that will be consumed by bystander commensal bacteria population as energy sources. B) Antibiotics disrupt the microbiota, which results 

in depletion of the primary bile acid converter. It can also deplete sialic acid and succinate consumers. C. difficile can therefore germinate, 

grow, and use the sialic acid and succinate as energy sources. Figure taken from Abt et al. (2016). 
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easy access to these nutrients, and this results in better growth and proliferation of the cells 

(Ng et al., 2013, Ferreyra et al., 2014). The growth of C. difficile is also prevented by direct 

interaction with bacteria that have antimicrobial activity. A few different bacteriocins have 

been identified, and these bacteriocins were reported to have antimicrobial properties against 

Gram-positive  pathogens,   including   C. difficile    (Rea et al., 2011, Trzasko et al., 2012).  

 

1.7.2 C. difficile spore 

Due to the strictly anaerobic nature of the vegetative form of C. difficile, the primary 

agent of infection and transmission of CDI, are C. difficile spores. Mutant strains of C. 

difficile that cannot produce Spo0A protein, a regulator responsible for the activation and 

regulation of sporulation genes in response to nutritional stress, failed to persist and transmit 

CDI (Deakin et al., 2012). Environmental contamination and survival of C. difficile spores, 

especially in hospitals, is a significant contributor to the spread of CDI among patients 

(Guerrero et al., 2012, Sunkesula et al., 2013). Once C. difficile infects the susceptible host, 

the spores can persist in the colonic environment and can survive the host’s innate immune 

system (Paredes-Sabja et al., 2012, Barra-Carrasco and Paredes-Sabja, 2014). The 

outgrowth and proliferation of C. difficile in a susceptible host results in the shedding of 

large numbers of spores in the faeces (Songer and Anderson, 2006). Approximately 50% of 

patient may become asymptomatic shedders of C. difficile spores for up to 4 weeks after the 

treatment and recovery from a CDI episode (Sethi et al., 2010), and are therefore a source 

of transmission (Sunkesula et al., 2013).  

 

Similar to B. subtilis spores, C. difficile spores also consist of the core, cortex and 

coat layer, and as reported for B. subtilis, the coat layer of C. difficile spores is resistant to 

heat and proteolytic enzymes such as proteinase k and trypsin (Escobar-Cortés et al., 2013). 
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However, C. difficile spores also consist of an electron-dense layer called exosporium which 

is the outermost layer (Barra-Carrasco et al., 2013, Díaz-González et al., 2015) (Figure 1.4).  

The exosporium contributes to the spore’s hydrophobicity and to the ability of C. difficile to 

adhere to surfaces (Joshi et al., 2012). The exosporium layer has been found in the spores of 

other species such as B. anthracis (Gerhardt, 1967), B. cereus (Gerhardt and Ribi, 1964), B. 

megaterium (Stewart, 2015) and Clostridium sporogenes (Hodgkiss et al., 1967).  The 

stability of C. difficile spore’s exosporium is a matter of controversy as some studies have 

reported that this layer is fragile and easily lost (Permpoonpattana et al., 2011b, 

Permpoonpattana et al., 2013), while other reports provide evidence that this layer is stable 

and stays attached to the spores (Barra-Carrasco et al., 2013, Paredes-Sabja et al., 2014). 

The exosporium seems to be more stable as Joshi et al. (2012) reported that the exosporium 

of C. difficile spores contribute to the spore’s adherence to inert surfaces such as stainless 

steel and consequently to the persistence of spores on the surfaces of health care 

environment.  

 

 

 

 

 

 

 

 

 

 

Figure 1.4: Ultrastructural morphotype of a C. difficile spore. Electron microscopy 

image of C. difficile stain 630. SC: spore core; PG: Peptidoglycan cortex; Co: coat 

layer; Ex: Exosporium. Image is taken from Barra-Carrasco and Paredes-Sabja (2014). 
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1.7.3 Virulence factors and pathogenesis mechanisms  

a) Toxins  

C. difficile produces three toxins, toxin A, toxin B, and binary toxin. The structurally 

similar toxin A and toxin B are the main virulence factors of C. difficile. These toxins are 

encoded by tcdA and tcdB genes located within a 19.6 kbp region called the pathogenicity 

locus. The pathogenicity locus region also contains three other genes, tcdD, tcdC, and tcdE, 

which are involved in regulation and transportation of toxin A and B (Monot et al., 2015). 

 

These toxins are proinflammatory, enterotoxic, and cytotoxic, with a molecular 

weight of 308 kDa (toxin A) and 270 kDa (toxin B) respectively (Drudy et al., 2007). Both 

toxins structurally consist of four functional domains: The N-terminus glucosyltransferase 

domain, a delivery and pore-forming domain, an auto-protease domain, and a combined 

repetitive oligopeptides domain located in the C-terminus, which is involved in receptor 

binding (Figure 1.5). In favourable conditions in the host gut, C. difficile spores colonise 

and germinate, and the vegetative cells proliferate and produce both toxins A and B, which 

enter the epithelial cell cytosol and cause the cytotoxic effect. Transferring both toxins into 

the host cell cytosol is a multistep process (Figure 1.5). The process starts with the binding 

of both toxins to receptors on the host cell surface via their receptor binding site. It seems 

that the toxins bind to different receptors. Two receptors that are expressed on the human 

colonocyte apical membrane, glycoprotein 96 and sucrose-isomaltase, are reportedly toxin 

A receptors that enable the entry of the toxin into the cell and facilitate its cytotoxicity 

(Pothoulakis et al., 1996, Na et al., 2008). In addition, two receptors, poliovirus receptor-

like 3 and chondroitin sulphate proteoglycan 4, have been identified as important for toxin 

B-mediated cytotoxicity (LaFrance et al., 2015, Yuan et al., 2015). To evoke the cytotoxic 

effect, toxins must be internalised into cell cytosol. They become internalised by receptor-
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mediated endocytosis (Florin and Thelestam, 1983). Once the endosome enters the cell 

cytosol, its pH reduces and becomes acidic. The endosome acidification is necessary to alter 

the toxins’ structure, which leads to the formation of pores in the endosome membrane. 

These pores will allow the translocation of the glucotransferase domain into the host cytosol 

(Giesemann et al., 2006, Genisyuerek et al., 2011). The glucotransferase will then mono-

glucosylate the Rho GTPases, which leads to their functional inactivation. The Rho family 

of GTPases, a sub-group of superfamily Ras proteins, are GTP-binding proteins that are 

located in the cell cytosol and have multiple regulatory functions, including regulation of 

actin cytoskeleton, transcriptional regulation, and apoptosis (Aznar and Lacal, 2001, 

Gerhard et al., 2008). The inactivation of Rho GTPases results in the breakdown of the actin 

cytoskeleton, which leads to a change in cell morphology (cells become round) and 

destruction of intestinal barrier function. Glucosylation of Rho GTPases also activates 

caspases, which are proteolytic enzymes and play an essential role in apoptosis (Gerhard et 

al., 2008).  

 

The production of binary toxin or C. difficile transferase (CDT) has been associated 

with increasing severity and high mortality of CDI (Bacci et al., 2011). The presence of CDT 

has been reported in a minority of C. difficile PCR ribotypes (Gerding et al., 2014). The 

toxin belongs to the binary ADP-ribosylating toxin family, and it comprises two 

components: the enzymatic ADP-ribosyltransferase (CDTa) and a separate 

binding/translocation component (CDTb) that binds to the host cell and enables passage of 

the CDTa into the cell cytosol. The CDTa and CDTb are encoded by cdtA and cdtB genes 

located on 6.2 kbp region, known as CDT locus or CTLoc (Perelle et al., 1997). 
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To determine whether CDT influences the severity of CDI, a strain of C. difficile that 

does not possess tcdA and tcdB genes but has an intact cdt gene was tested on hamsters. This 

Figure 1.5: Structure and mechanism of cellular intoxication of toxin A and toxin 

B. A) Both toxins consist of four domains. The N-terminal glucosytransferse domain 

(red), combined repetitive oligopeptides domain (CROPs) in C-terminal (green), 

autoprotease domain (blue), and delivery or pore-forming domain (yellow). B) For the 

delivery of the toxin into the cell, the toxins bind to the cell surface receptor via the 

combined repetitive oligopeptide domain, and they are internalised by receptor mediated 

endocytosis (1). Pores form once the endosome has acidified, and this results in 

glucotransferase translocation (2). Inositol hexakisphosphate (InsP6) dependent 

autoproteolysis will release the glucotransferase into the cytosol (3). Finally, 

glucotransferase inactivates the Rho family GTPases by glucosylation, which eventually 

results in cell death (4). Figure taken from Pruitt et al, (2012).  
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strain was dosed to hamsters following clindamycin. Although it showed successful 

colonisation in the hamsters’ GI-tract, it did not cause diarrhoea or death (Geric et al., 2006). 

Another group, however, showed that 3 out of 8 hamsters died when they were dosed with 

a strain that had deactivated toxin A and toxin B but active CDT, although they did not show 

any typical hamster CDI symptoms. However, isolates with either toxin A or toxin B 

remained fully virulent. When hamsters were dosed with a strain that had toxin B inactivated, 

expression of toxin A and CDT caused significantly more death which suggested that the 

binary toxin may have an important role in increasing pathogenicity (Kuehne et al., 2014). 

 

Despite extensive knowledge of the structure and enzymatic function of the CDT, its 

role in increasing the severity of CDI disease was uncharacterised until recently. Cowardian 

and colleagues (Cowardin et al., 2016) examined the influence of CDT on host immune 

response and showed that suppressing protective colonic eosinophilia by the binary toxin 

enhances the C. difficile virulence. The authors showed that mice infected with R20291 

(tcdA+, tcdB+, cdt+), a hypervirulent strain, had higher mortality and weight-loss in 

comparison to R20291 that lacked the CDTa or CDTb domains. Their work proved that 

eosinophils that have innate immunity play a protective role against CDI and that CDT, via 

a Toll-like receptor 2-dependent pathway, suppresses the eosinophils’ protective function in 

blood or within the colon.  

 

b) Non-toxin virulence and pathogenesis factors  

Despite the toxins that play a significant virulence factor in CDI, other putative non-

toxin virulence factors exist, including the proteins that are important for adherence and 

colonisation. A bifunctional coat protein, CotE, was shown to affect colonisation and 

virulence of C. difficile (Hong et al., 2017a). CotE consists of two domains, an N-termini 



Chapter 1: Introduction 

 
 

25 

 

peroxiredoxin and a C-termini chitinase domain (Permpoonpattana et al., 2011b). Spores are 

often considered as biochemically dormant, yet Hong and colleagues (2017) showed, both 

in vitro and ex vivo using isogenic mutants, that CotE is vital for adherence and binding of 

the spore to the mucus and that it also has a role in mucus degradation. Hamsters that were 

dosed with spores with mutated cotE showed significantly lower colonisation and clinical 

symptoms in comparison to hamsters that were infected with an isogenic strain with intact 

cotE (Hong et al., 2017a).  

  

C. difficile cells have an outermost proteinaceous layer called the surface layer (S-

layer) that surrounds the bacterium and plays a role in adhesion, complement resistance, and 

protection from bacterial parasites (Sára and Sleytr, 2000). The C. difficile S-layer consists 

of two protein subunits, low molecular weight (LMW) and high molecular weight (HMW) 

proteins. These subunits are formed via proteolytic cleavage of their polypeptide precursor, 

surface-layer protein A (SlpA), by cysteine protease (Cwp84) (Dang et al., 2010). By using 

an antibody against SlpA, the adherence of C. difficile to cultured cells was blocked. In 

addition, the C. difficile adhesion to epithelial cells significantly reduced when the 

monolayers were pre-treated with crude or purified SlpA (Merrigan et al., 2013). 

Furthermore, surface layer proteins (SLPs) were involved in immune recognition and the 

inflammatory response. It has been reported that SLPs are recognised by Toll-like receptor 

4 (TLR4), and the activation of TLR4 by SLPs leads to maturation of dendritic cells 

following by activation of the T-helper cell response (Ryan et al., 2011). Cwp84, as well as 

being involved in processing the S-layer, has also been shown in vitro to degrade 

extracellular matrix protein and this proteolytic activity could play a role in host tissue 

degradation resulting in the dissemination of the infection (Janoir et al., 2007). 
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In addition to the latter non-toxin virulence agents, many other factors that increase 

the virulence of C. difficile have been identified. This includes the flagella, heat shock 

protein GroEL, fimbriae, type IV pili, and fibronectin binding proteins. The role of these 

factors in increasing virulence varies within different C. difficile strains (Awad et al., 2014).  

 

1.7.4 Hypervirulent strains  

There are different strains of C. difficile, hypervirulent and not hypervirulent. Since 

2004, the occurrence of CDI has markedly increased, and in most cases, the identified C. 

difficile strain was PCR ribotypes 027 (R027) (Morfin-Otero et al., 2016). The most virulent 

strain of C. difficile, an R027 strain called R20291, was isolated in 2006 following a hospital 

outbreak (Stabler et al., 2009). Hypervirulent C. difficile strains are more infectious than 

other C. difficile strains, and they are associated with high severity and mortality. Many 

studies were performed to identify the factors that make R027 the most virulent strains of C. 

difficile. It has been reported that hypervirulent strains produce more toxins than other strains 

in vitro (Warny et al., 2005). The tcdC gene is a negative regulator of toxin expression 

through destabilising the TcdR-holoenzyme. Initially, it was thought that a change in reading 

frame or deletion of tcdC could explain the high toxin production of R027. The tcdC gene 

has been found to have an 18-bp in-frame deletion or a single base pair (bp) deletion that 

results in the formation of a stop codon and truncation of the protein (Dupuy et al., 2008). 

However, by characterising the tcdC in other non-epidemic strains, various deletions have 

been identified, which suggests that increased toxin expression of R027 is not caused by 

these mutations alone (Spigaglia and Mastrantonio, 2002).  

 

Apart from high toxin production, other factors that may have a role in increasing 

the severity of R027 have been investigated. R027 shows higher resistance to antibiotics, 
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especially fluoroquinolone antibiotics, and this is associated with the higher global spread 

of these strains (He et al., 2013). Some studies reported that the R027 also exhibits increased 

sporulation and high sporulation could explain the high level of transmission of R027 

(Åkerlund et al., 2008, Rupnik et al., 2009, Dingle et al., 2011). However comparison of 

different C. difficile isolates by Burns et al. (2011) indicated that neither the total sporulation 

capacity nor the sporulation rate of the different R027 types were higher than that of non-

R027 strains. Furthermore, they observed significant variation in sporulation deficiency of 

different R027 types. The overrepresentation of R027 is also due to competing with the 

endemic strains, which has been noted both in vivo and in vitro (Robinson et al., 2014).  

 

1.7.5 Relapse  

The most common complication of CDI infection is its recurrence. Approximately 

25% of successfully treated patients with CDI will experience the recurrence of the disease. 

Recurrence mostly occurs within 30 days, either by the original infecting strain (relapse) or 

by a new strain (re-infection) from the contaminated local environment (Kamboj et al., 

2011). The antibiotics only eliminate vegetative cells and do not affect the C. difficile spores, 

which means that once these antibiotics have been discontinued, spores will have a chance 

to germinate; this results in proliferation of C. difficile in the gut and the symptoms re-occur 

(McFarland et al., 2002). The recurrence of CDI is mostly in elderly (>65 years) Caucasian 

patients, females, patients with the severe initial disease, and patients with current antibiotic 

use (Garey et al., 2008).  
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1.8 Treatment of CDI  

a) Antibiotics 

Various antibiotics have been introduced that can treat CDI. Oral administration of 

metronidazole has been recommended as the first-line treatment for mild, non-severe CDI. 

Vancomycin is another antibiotic that is used for more severe CDI and recurrence of the 

disease, although there is evidence that metronidazole can be as effective as vancomycin 

(Tonna and Welsby, 2005). Another successful antibiotic for treating CDI that was approved 

by the FDA in 2012 is fidaxomicin. An advantage of fidaxomicin is that once it has been 

taken orally, because of its low absorption, a high chronic concentration of this drug can be 

present. Fidaxomicin, like vancomycin, is also used for moderate to severe CDI (Al-

Jashaami and DuPont, 2016).  

 

The same antibiotics that are used for treating the primary disease can be used for the 

first recurrence of CDI. Fidaxomicin and vancomycin were similar in achieving an initial 

clinical response for patients with the first recurrence of CDI, despite the fact that the rate of 

subsequent recurrence with fidaxomicin was 19% in comparison to vancomycin, which had 

a rate of 35% (Cornely et al., 2012).  

 

b) Tolevamer  

Tolevamer is a non-antimicrobial, soluble, and anionic polymer that is orally 

administrated to treat CDI. It has a HMW (> 400 kDa). The unique mechanism of the action 

of tolevamer is noncovalent, with high-affinity binding to C. difficile toxin A and toxin B 

(Louie et al., 2006). The binding of tolevamer to toxins effectively neutralises them. Thus, 

unlike the traditional antibiotic that affects both the pathogen and the gut bacteria, tolevamer 

interacts neither with pathogen nor the gut bacteria and therefore does not further disrupt the 
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microflora (Kurtz et al., 2001). The original tolevamer was GT160-246; it markedly 

attenuated the CDI severity and was associated with lower recurrence compared to standard 

therapy with vancomycin (Davidson et al., 2004, Louie et al., 2006). Different preclinical 

studies suggested tolevamer for the treatment of mild to moderate CDI. A disadvantage of 

tolevamer is that it is associated with an increased rate of hypokalaemia (Louie et al., 2006).  

 

c) Faecal microbiota transplantation  

Patients with CDI have a reduction in the diversity of microbiota due to antibiotic 

therapy, and this reduction in the microbiome can be restored by faecal microbiota 

transplantation  (Avila et al., 2016). Faecal microbiota transplantation therapy works by 

repopulating the patient’s protective microbiome of natural colonic flora that has been 

suppressed or killed as a result of antibiotic treatment. Restoring the commensal bacteria in 

the gastrointestinal tract can, theoretically, suppress the growth and colonisation of C. 

difficile. This method has been shown to be an adequate way of treating CDI and the 

recurrence of the disease. More than 90% of patients suffering from the relapse have been 

cured by faecal microbiota transplantation (Rohlke and Stollman, 2012). The stool from a 

healthy human donor can be delivered to the intestine by colonoscopy, enema, nasogastric 

route, or as capsules (Al-Jashaami and DuPont, 2016). Very recently, it was found that 

bacteriophage transfer during faecal microbiota transplantation is associated with improved 

CDI treatment outcomes (Zuo et al., 2017). This group showed that a higher Caudovirales 

(tailed bacteriophages) richness in the donor than the recipient resulted in curing all 

recipients.  

 

Although faecal microbiota transplantation is an effective treatment for CDI, there 

are some critical risks, such as screening the donor stool for infectious agents, as there is a 



Chapter 1: Introduction 

 
 

30 

 

possibility that the tests fail to detect a pathogen. The use of faecal microbiota transplantation 

could also cause inflammatory bowel disease, obesity, and functional gastrointestinal 

disorders (Sbahi and Di Palma, 2016). 

 

d) Passive immunisation  

The duration and severity of CDI largely depends on the level of immune response 

to C. difficile colonisation. It has been reported that the asymptomatic C. difficile carriers 

had a high level of the IgG anti-toxin A antibody and the risk of C. difficile diarrhoea was 

much lower in comparison to carriers who had a low level of the antibody against toxin A 

(Kyne et al., 2000). Prior to that, another study used the anti-toxin A and toxin B 

immunoglobin Y (IgY) derived from egg yolk to treat hamsters with CDI. Their results 

showed that hamsters that were administered both anti-toxin A and B IgY were protected 

from the CDI, relapse, and subsequent C. difficile reinfection. Using the IgY against toxin 

A, however, hamsters were only protected against CDI but not against the relapse (Kink and 

Williams, 1998). 

 

In the past decade, few studies have shown that introducing an anti-toxin antibody 

can prevent CDI and relapse. Administering the human monoclonal antibodies against toxin 

B alone or with anti-toxin A resulted in 100% protection of piglets, yet administration of 

anti-toxin A antibody alone developed severe GI and systemic disease in the animals (Steele 

et al., 2012). These results were unexpected as a previous study had shown that both toxin 

A and toxin B are cytotoxic and each toxin individually can cause the CDI (Kuehne et al., 

2010). In humans, the administration of intravenous immunoglobin from healthy human 

plasma donors to patients with CDI has successfully treated the disease (Salcedo et al., 1997, 

Cone et al., 2006). However, some studies  cast doubt  on the effectiveness  of  intravenous  
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immunoglobin in treating CDI (Juang et al., 2007, Abougergi et al., 2010).  

 

The most successful study on passive immunisation for treating CDI was conducted 

by Lowy and colleagues (2010). They intravenously administered fully human monoclonal 

antibodies against both C. difficile toxins in combination with antibiotics and showed that as 

well as treating CDI, this combination was effective in reducing the C. difficile relapse from 

25% to 7% (Lowy et al., 2010). Recent phase-III clinical evaluations using a human 

monoclonal antibody showed effective treatment of CDI. In this clinical trial, an anti-toxin 

B human monoclonal antibody called bezlotoxumab resulted in significant reduction of CDI 

relapse (Wilcox et al., 2017).  

 

e) Pre-colonisation with non-toxin-producing C. difficile strains 

For any C. difficile strain to cause the infection, it must at least produce either toxin 

A or toxin B. Not all the strains of C. difficile are toxigenic, and a strain that does not produce 

any toxin is termed non-toxigenic (NT). The NT strains were first isolated in 1980 

(Shuttleworth et al., 1980). A few years after the isolation of these strains, Wilson and 

colleagues (1983) reported that NT C. difficile (NTCD) strains could protect hamsters 

against the toxigenic strains. In their report, 93% of hamsters that were dosed with NTCD 

before a toxigenic C. difficile challenge survived. In comparison, survival of animals that 

were administered both toxigenic and NT isolate together and hamsters that were only dosed 

with toxigenic isolates was 32% and 21% respectively. Further investigation proved that 

protection against CDI by NT requires the NTCD to be present and alive at the time of 

toxigenic strain exposure. The protective effect of the non-toxigenic strains vanishes if they 

are killed either by heat or by an antibiotic such as vancomycin (Borriello and Barcley, 

1985). Although hamsters that were successfully pre-colonised with NTCD showed 
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protection against the toxigenic strain, eventually, they were infected by the toxigenic strain 

and developed CDI, indicating that the protection was short term. To increase the effect and 

durability of protection, another group have analysed different NTCD strains (Sambol et al., 

2002).  They tested the efficacy of pre-colonization of hamsters with 3 nontoxigenic C. 

difficile strains for preventing CDI. Groups of hamsters that were pre-colonised with the 

NTCD isolates, survived up to 106 days.  

 

In another study, pre-colonising hamsters with a NTCD called M3 resulted in 100% 

protection when they were challenged with the most virulent strain of C. difficile (R027) 

(Nagaro et al., 2013). Realising the potential of the M3 strain for preventing toxigenic C. 

difficile colonisation, Gerding et al. (2015) has investigated the protective effect of this strain 

further by testing it on humans in a randomised clinical trial. Their results produced several 

key findings. First, they showed that NTCD was well tolerated and safe in patients who 

received it. Second, the relapse rate in patients who were successfully colonised with the M3 

strain compared to patients who were not colonised was 2% and 31% respectively. Finally, 

no NTCD was detected in patients that received M3 after detection of the toxigenic strain in 

their stool, which suggests that the NTCD cannot compete with the toxigenic strain that has 

already colonised.  

 

The mechanism by which NTCD prevents relapse is not clear. One possibility is that 

NTCD occupies the same adherence niche in the GI-tract as toxigenic strains, and once it is 

colonised, it is able to compete with the newly ingested or resident toxigenic C. difficile 

strains. There are concerns about using NTCD strains, as there is a possibility that these 

strains could acquire the pathogenicity  locus  containing the  genes encoding toxin A and B  

via horizontal transfer (Brouwer et al., 2013).  
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f) Vaccine  

Vaccines can result in long-term protection by stimulating adaptive immunity. 

Several groups have been working on different types of vaccine against C. difficile, and their 

results for protection against the disease were promising (Ghose et al., 2007, 

Permpoonpattana et al., 2011a, Bruxelle et al., 2017). The adaptive immune response results 

in recruitment of the T cells and B cells and the production of the antibody IgA (secreted 

into the gut) and IgG or immunoglobulin M (IgM) in the blood. The production of SIgA and 

IgG has been shown to prevent CDI either by neutralising toxins or by preventing C. difficile 

colonisation in the gut. First demonstrated by Libby and colleagues (1982), the concomitant 

injection of toxoids A and B to hamsters resulted in significant protection against CDI. This 

has prompted many scientists to further explore the efficiency of toxoid-induced immunity 

by evaluating the parameters that influence the vaccine efficiency, such as the use of an 

adjuvant, choice of antigen delivery system, and routes of immunisation. Another group 

showed that transcutaneous immunisation with C. difficile toxoid A resulted in induction of 

mucosal and systemic immune responses in mice (Ghose et al., 2007). They showed that 

immunisation of mice resulted in the production of anti-toxin A-specific IgG and IgA in 

serum and anti-toxin A IgA in faeces and reported that these antibodies neutralise toxin A in 

vitro. Recently, a human clinical trial using a toxoid vaccine by Sanofi Pasteur entered phase 

III. However, the study was terminated, as they concluded that the probability of success 

would be low.  

 

As well as the development of toxoid-based vaccines, there are different research 

groups focused on developing a recombinant protein vaccine. It was proposed that the use 

of the recombinant toxin sub-domain can have many advantages, such as overcoming the 

complexity of producing a toxoid that requires the purification of a large protein and 
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chemical inactivation, with the intrinsic risk of incomplete inactivation (Nencioni et al., 

1991). Lyerly and colleagues (1990) were the first to report that 33 repeating units of the 

receptor binding site of toxin A can induce an immune response. When hamsters were 

subcutaneously immunised with this recombinant peptide, they were partially protected from 

CDI. In another study, with the aim of inducing anti-toxin A immunity, a recombinant fusion 

protein consisting of 14 repeat units of toxin A along with immunogenic fragment C of the 

tetanus toxin was transferred into an attenuated strain of Salmonella typhimurium (Ward et 

al., 1999b). The authors demonstrated that intranasal and intragastric administration of this 

strain induced an adaptive immunity and a significant level of anti-toxin A IgA in the gut 

and anti-toxin A IgG in the serum. Mice that were administered the recombinant strain 

intranasally, consistently generated higher anti-toxin A IgA antibody, suggesting that the 

route of administration is important for an optimum immune response.  

 

A mucosal spore vaccine is a further strategy for generating an immune response. 

Recently, it was found that hamsters that were orally administered B. subtilis spores that 

expressed a segment of the C-terminus of the C. difficile toxin A were protected against CDI 

(Hong et al., 2017b). No toxins and spores of C. difficile were detected in the faeces and 

caecum of the hamsters. The key finding in the above study was that in addition to 

recognising toxin A, the generated anti-toxin A IgG and SIgA cross-reacted with toxin B 

and a few epitopes on both vegetative cells and spores of C. difficile. It was suggested that 

the lack of C. difficile colonisation in the gut was due to the attachment of the produced 

antibodies against the toxin A C-terminus segment to both cells and spores of C. difficile, 

blocking them from attachment to the epithelial cells. This spore vaccine is currently in phase  

I of a human clinical trial.  
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Thesis objectives 

 

1. To develop a cloning system that results in B. subtilis recombinant spores expressing 

heterologous protein on their surface without using an antibiotic-resistance gene as a 

selection marker. The gene(s) of interest will be fused with either cotB or cotC (CotB 

and CotC will serve as anchor protein) and will be inserted into two thymidylate 

synthase genes (thyA and thyB, required for thymine synthesis) of B. subtilis strain 

PY79 which results in the expression and display of chimeric proteins on the surface 

of PY79 spores. Ultimately the recombinant strains become thymine auxotroph. The 

constructed clones will be characterised for their growth in different media, 

sporulation, germination and their persistence in animal gut.  

 

2. To produce and test different recombinant spores for industrial and treatment 

purposes, especially treatment of CDI. Antigen proteins or enzymes will be 

expressed and displayed on the surface of PY79 spores and these clones will be tested 

to find out whether the expressed and displayed proteins are functional.  

 

3. To identify the ribotypes, and bclA genes located on the exosporium of C. difficile 

spores, in 45 human clinical isolates of C. difficile and to characterise the sporulation, 

in vitro cell-cytotoxicity and colonisation of different toxigenic ribotypes with 

different types of bclA1 gene (full-length, truncated, and deleted).    
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CHAPTER 2  

MATERIALS AND METHODS 

2.1 General methods 

The general methods for work with B. subtilis, including the ‘two-step transformation 

procedure’, were performed as described previously (Harwood and Archibald, 1990). 

Cloning in E. coli was done as described previously (Sambrook and Russell, 2001).  

 

2.2 Bacterial strains 

PY79 is a prototrophic strain of B. subtilis derived from the strain 168 type (Zeigler 

et al., 2008). PP108 (amyE::cotC-tcdA26-39 thrC::cotB-tcdA26-39) has been described 

elsewhere (Permpoonpattana et al., 2011a). SH250 is a prototrophic derivative of PY79 

carrying the cat gene (encoding resistance to chloramphenicol) inserted at the amyE locus. 

DSM (Difco Sporulation Media) is a standard media for growth and sporulation of B. subtilis 

(Nicholson et al., 2000).  

 

2.3 pThyA and pThyB construction (Chapter 3)  

pThyA (4,274 bp) carried a 1,910 bp segment comprising the left (900 bp) and right 

(950 bp) homology arms of the B. subtilis thyA gene surrounding a multiple cloning site 

(MCS) cloned into pMA-RQ (2,556 bp; Genscript, USA). Both arms carried additional 

proximal and distal DNA sequences adjacent to thyA. Similarly, pThyB (4,973 bp) carried a 

2,057 bp segment comprising the left (900bp) and right (1.1 kb) arms of the B. subtilis thyB 
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gene surrounding an MCS cloned into pBluescript SK (+) (2,958 bp). Plasmids carried the 

ampicillin resistance gene (bla), and the nucleotide sequences of the thyA and thyB segments 

are given in Appendices A and shown schematically in Figure 2.1. pThyA and pThyB 

plasmids were constructed which carried chimeric genes inserted at the MCS sites of each 

vector.  

 

Chimeric genes (not optimised for codon usage) containing an in-frame fusion 

between the 5’ segment of B. subtilis cotB or cotC with the vp28, vp26, tcdA26-39 and 

streptavidin coding ORFs were first synthesised with suitable 5’ and 3’ ends for sub-cloning 

in the MCS of the pThyA and pThyB vectors. The subtilisin E (aprE) and alpha-amylase 

(amyE) genes were PCR amplified from a B. subtilis strain (SG115, Sporegen limited 

collection) and B. amyloliquefaciens (SG277, Sporegen limited collection) respectively 

(Appendices B). The amplified aprE coding segments lacked the N-terminal regions 

involved in protein secretion (pre) and activation (pro). For amyE, the amplified coding 

segment lacked the N-terminal regions involved in protein secretion (pre). Both these genes 

were cut at their 5’ end using HindIII restriction enzyme and fused, by ligating, with cotB 

(cut using HindIII at the 3’). The resulting cotB-aprE /cotB-amyE were ligated to pThyA via 

BamHI and the EcoRI restriction site. Table 2.1 shows the primers used to amplify above 

genes.
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Figure 2.1: Schematic diagram of pThyA and pThyB. A total of ~900 bp proximal (P) and distal (D) of both thyA and thyB has been 

synthesised in an E. coli plasmid, pMA. Both thyA and thyB are interrupted at the midpoint with an MCS. pThyA and pThyB have a total 

of 4,274bp and 4,973bp respectively. The antibiotic-resistant gene on both plasmids is bla.  
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2.4 Recombinant B. subtilis strains (Chapter 3) 

2.4.1 Construction of recombinant strains by the inactivation of thy genes 

The procedure developed here consisted of two steps. In the first stage cells, of a 

wild-type recipient strain (in the work described here the prototrophic strain PY79 was used) 

were made competent using a ‘two-step transformation’ procedure described by Dubnau 

Primer Direction Sequence1 Restriction site 

cotB 

CotB_F Forward TATAGGATCCACGGATTAGGCCGTTTG BamHI 

CotB_R Reverse TATAAAGCTTGGATGATTGATCATCTGAA 

GATTTTAG 

HindIII 

cotC 

CotC_F Forward TATAGGATCCTTCACAAAAATACTCGTTAT 

TTTG 

BamHI 

CotC_R Reverse TATAAAGCTTGTAGTGTTTTTTATGCTTTTT 

ATACTC 

HindIII 

amyE 

AmyE_F Forward TATAAAGCTTGAAACTGCAAACAAATCGAA HindIII 

AmyE_R Reverse TATAGAATTCTTAATGCGGAAGATAACCGTT 

TAA 

EcoRI 

aprE 

AprE_F Forward TATAAAGCTTGTGAGAGGCAAAAAGGTATG HindIII 

AprE_R Reverse TATAGAATTCTTACTGAGCTGCCGCCTGTAC EcoRI 

Table 2.1: PCR primers for amplification of different genes 
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(Dubnau and Davidoff-Abelson, 1971) and in common use in Bacillus labs (Dubnau and 

Davidoff-Abelson, 1971, Cutting, 1990). In brief, a single colony of the B. subtilis strain 

PY79, grown overnight on LB at 30oC, was used to inoculate 20 ml of SPC media (T-base 

[(NH4)2SO4; 2 g, K2HPO4·3H2O; 18.3 g, KH2PO4; 6 g, trisodium citrate·2H2O; 1g]; 20 ml, 

50% (w/v) glucose; 0.2 ml, 1.2% (w/v) MgSO4·3H2O; 0.3 ml, 10% (w/v) yeast extract; 0.4 

ml, 1% (w/v) casamino acids; 0.5 ml) and allowed to grow at 37oC, with vigorous aeration, 

to an OD600 of 0.5-0.6. Then 0.2 ml of the culture was used to inoculate 20 ml of pre-warmed 

SPII media (T base; 20 ml, 50% (w/v) glucose; 0.2 ml, 1.2% (w/v) MgSO4·3H2O; 1.4 ml, 

10% (w/v) yeast extract; 0.2 ml, 1% (w/v) casamino acids; 0.2 ml, 0.1 M CaCl2; 0.1 ml) and 

allowed to grow for s further 90 min at 37oC with aeration. Cells were pelleted by 

centrifugation (8,000 g, 5min) at RT. The supernatant was decanted into a sterile container 

and cells were gently resuspended in 1.6 ml of the supernatant and 0.4 ml of 50% glycerol. 

Aliquots of the competent cells (0.3 ml) were made and stored at -80oC.  

 

 pThyA plasmids carrying the chimeric gene were linearised with either ApaLI or 

ScaI digestion. Then ~500 ng of linearised plasmid was added to 300l of competent cells 

and was incubated for an hour stirring at 37oC. After that, cells were plated on SMM 

(Spizizen’s Minimal Media (SMM)) (Harwood and Archibald, 1990) agar, supplemented 

with thymine (50 g/ml) (Sigma; T0376) and trimethoprim (3 g/ml) (Sigma; T7883). After 

96h of growth at 37oC, single colonies were colony purified and checked for growth at 37oC 

and 46oC on SMM agar supplemented with ± thymine (50 g/ml) and trimethoprim (3 

g/ml). Cells carrying an insertion at the thyA locus would grow at 37oC with or without 

thymine but were unable to grow at 46oC unless supplemented with thymine. A further 

verification was to amplify, using PCR, the presence of the chimeric gene from 

transformants using primers annealing to the thyA sequences (Table 2.2). In the second 
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stage, a linearised (ApaL1 or Sca1) pThyB plasmid carrying a chimeric gene was introduced 

into cells of the thyA insertion strain by electroporation. Electroporated cells were plated on 

SMM+CAA (SMM containing 0.2% (w/v) casamino acids (CAA)) supplemented with 

thymine (50 g/ml) and trimethoprim (6 g/ml) and incubated at 37oC for 48h. To confirm 

the presence of both thyA and thyB, insertion colonies were streaked on SMM+CAA agar ± 

thymine (50 g/ml) and grown at 37oC. Cells carrying two insertions were unable to grow 

at both 37oC and 46oC unless supplemented with thymine. A final verification was made 

using PCR primers that amplified the two insertions (Table 2.2). Using electroporation, 

integration frequencies were about 1 X 103/g of linear DNA with ~20% of trimethoprim-

resistance colonies carrying two insertions (thyA and thyB).  

 

 

 

 

 

 

 

 

 

 

 

2.4.2 Constraction of chloramphenicol resistance PY79 (Chapter 3)  

Plasmid DG364 (pDG364) that had left and right homology arms (to enable double 

cross-over) of the amyE locus and also a chloramphenicol resistance gene (surrounded by 

the two arms), were linearised and transformed into PY79 competent cells. Transformants 

Primer Direction Sequence 

thyA 

ThyA_F Forward GTCTAAATGGAGAAAAAGTGGATC 

ThyA_R Reverse GTTAAGGCCATTGCGTCTAATTC 

thyB 

ThyB_F Forward GATATTAAAACAAATCCGAACTC 

ThyB_R Reverse GTCAGACACATAGAATTG 

Table 2.3: Primers used to check insertion into thyA and thyB genes 
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were confirmed by their ability to grow on LB supplemented with 5 g/ml of 

chloramphenicol and also by their inability to break down starch on a starch agar plate. 

 

2.5 Electroporation (Chapter 3) 

The procedure used here was modified from established methods (Xue et al., 1999) 

for electroporation in Bacillus primarily with the use of an SOC2 media that contained no 

yeast extract. The SOC2 was tryptone (2% w/v), NaCl (10 mM), KCl (2.5 mM), MgCl2 (5 

mM), MgSO4.7H2O (5 mM) and glucose (20 mM). An overnight culture of the strain 

carrying a thyA insertion was sub-cultured in 25 ml of the SOC2 media (supplemented with 

0.5M sorbitol) to give a starting OD600 of 0.2. The culture was grown at 37oC to an OD600 of 

1.4, cooled on ice for 10 min, and then harvested by centrifugation at 4oC (5,000 g, 5 min). 

Cells were washed four times in ice-cold electroporation solution (0.5M sorbitol, 0.5M 

mannitol, 10% (v/v) glycerol) and suspended in 1.6 ml of the same ice-cold solution. The 

cells were then electro-competent and ready for immediate use. Cells were kept on ice and 

used within 30 min, although aliquots can be stored at -80oC indefinitely. 1l (~50ng) of 

linearised plasmid DNA was added to 60l of electrocompetent cells and the mixture 

transferred to a pre-chilled cuvette (1 mm gap width) and incubated for 1.5 min on ice. The 

cuvette was then placed inside the electroporator (BioRad GenePulser Xcell) and the 

following parameters used for electroporation: voltage – 2,100V, resistance – 200W, time – 

5 milliseconds and number of pulses – 1. After electroporation, 1 ml of the recovery media 

(SOC2 media containing 0.5M sorbitol and 0.38M mannitol) was added to the cuvette and 

the mixture was transferred to 2 ml Eppendorf tubes and incubated for 3h at 37oC after which 

cells were serially diluted and plated SMM containing 0.2% (w/v) CAA), thymine (50 

g/ml) and trimethoprim (6 g/ml) and incubated at 37oC for 48h. 
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2.6 Sporulation and spore purification (Chapter 3 and 4) 

Sporulation was carried out using the exhaustion method. For sporulation of 

thyminless B. subtilis, thymine (50 g/ml) was supplemented in all media. Spores were 

harvested 24h after the initiation of sporulation. As previously described, spore suspensions 

were purified using lysozyme to break the residual sporangial cells followed by washing in 

1 M NaCl-1 M KCl and water (three-times) (Nicholson et al., 2000).  

 

2.7 Whole-spore ELISA (Chapter 3 and 4) 

An ELISA method was used to detect surface exposed proteins as described 

previously (Permpoonpattana et al., 2013). Microplate wells (Greiner, high binding) were 

coated with 50l of a suspension of pure spores (2 X 108 spores/well) and left overnight at 

4oC. Plates were blocked with 2% (w/v) BSA for 1h at 37oC. Rabbit polyclonal antibodies 

(PAbs), recognising either the heterologous antigen expressed on the spore surface or the 

whole B. subtilis spore, were used as primaries with incubation for 2h at RT. Anti-rabbit 

IgG-horseradish peroxidase (HRP) conjugate (1:5,000 in PBS plus 0.05% Tween-20) was 

used as a secondary with 1h incubation at RT. TMB (3, 3’, 5, 5’-tetramethylbenzidine) was 

used as the substrate. After addition of TMB and developing the ELISA, the reaction was 

stopped using 2M H2SO4 and measured at 450nm.  

 

2.8 Expression and purification of His-tagged recombinant proteins (Chapter 3 and 4) 

The pET28b expression vector was used to express recombinant proteins (VP26 of  

white spot syndrome virus). The amplified products were cloned in-frame into pET28b and 

the plasmid was transformed into expression E. coli strain BL21. Primers used for the 

construction of pET28b clones are shown in Table 2.3.  
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a) Protein expression 

100 ml of LB containing 30 g/ml of kanamycin was inoculated with an overnight 

culture of BL21 containing the plasmid to an OD600 of 0.05. The culture was grown with 

agitation (200 rpm) at 37oC to an OD600 equal to 0.4-0.6. IPTG (Thermo Fisher; R0392) was 

added to the culture to the final concentration of 100 M to induce the protein expression, 

and the culture was incubated further for at least 3h. The cells were harvested by 

centrifugation at 4,500 x g for 10 min at 4°C. The supernatant was discarded and the pellet 

was stored at -20oC till assay. 

  

b) Cell lysis and protein extraction 

Cell pellet was resuspended in lysis buffer (NPI-10 [50 mM NaH2PO4, 300 mM 

NaCl, 10 mM imidazole, pH 8.0], protease inhibitor, 2% Triton X100, lysozyme 1 mg/ml, 1 

mM dithiothreitol, 1% sarkosyl, 1µl per 10 ml of 10% glycerol benzonase) and incubated 

for 30 min at 4oC with slow agitation. Then the cells were sonicated on ice for 1.30 min (1 

sec on, 1 sec off, amplitude 30%). The sample was further incubated for 30 min on ice before 

it was centrifugated (13,000 x g, 20 min) at 4oC. The supernatant was filter-sterilised (0.45-

μm pore size) and transferred to a clean tube.  

 

c)  Purification of His-tagged proteins   

             The cell lysate was injected into an FPLC NGS-purifier system (BioRad) and 

purified, according to the BioRad manual, by passing the cell lysate through an HiTrap 

chelating HP column and removing the cell debris with washing buffer NPI-20 (50 mM 

NaH2PO4, 300 mM NaCl, 20 mM imidazole, pH 8.0). The His-tagged proteins were then 

eluted using elution buffer NPI-250 (50 mM NaH2PO4, 300 mM NaCl, 250 mM imidazole, 

pH 8.0), different fractions were collected, and the fractions were checked for the presence  
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of protein by SDS-PAGE. 

 

 

 

 

 

2.9 Raising antibodies (Chapter 3 and 4) 

PAbs to VP28 and TcdA26-39 were raised in rabbits using four sub-cutaneous 

injections (1 g/dose, every 14 days). VP26 polyclonals were raised in mice using purified 

rVP26 protein (4 intra-peritoneal doses at 14-day intervals, 10 g/dose [0.1 ml/site]). 

Recombinant proteins were complexed with Freund’s adjuvant (Sigma; F5881). After the 

third dose of protein, mice were monitored for the production of antibodies. By day 50, the 

whole blood was collected from the mice and transferred into sterile tubes. The blood 

samples were left for 2h at 4oC to separate cells from serum. Cells were then further removed 

by refrigerated centrifugation (2,000 rpm, 10 min). The top layer (serum) was removed into 

a clean tube. The serums were then incubated in a 56°C water bath for 15 min to destroy the 

complement system. Obtained serums were purified using protein A chromatography 

protocol from BioRad.  

 

 

 

Primer Direction Sequence 1 Restriction 

site 

vp26 

Vp26_NcoI_F Forward TATACCATGGAATTTGGCAACCTAAC

A 

NcoI 

Vp26_notI_R Reverse  TATAGCGGCCGCCTTCTTCTTGATTT

CGTCCTTGAT 

NotI 

1 Restriction site in bold and italics 

 

 

Table 2.5: PCR conditions for 

amplification of tcdA and tcdB1 

Restriction site in bold and italics 

 

Table 2.4: Primers used for construction of pET clones 
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2.10 Western blotting (Chapter 3) 

 For Western blotting, purified spores were prepared and 2 X 108 suspended in 40 l 

of Bolt LDS buffer (Life Tech.) and incubated at 95oC for 10 min. The spore suspensions 

were centrifuged (18,000 g, 10 min) and 20 l of each supernatants was run on 12% SDS-

PAGE gels. Then the proteins from the gels were blotted onto an Immobilon-P PVDF 

Membrane (Merck; IPVH00010) using a Trans-Blot® Turbo™ Transfer System (Bio-Rad). 

Membranes were then blacked in methanol and allowed to dry for 1h at RT. After that, 

membranes were exposed to the relevant primary antibody in PBST (1M PBS, pH 7.4; 0.05% 

Tween 20) plus 0.3% skimmed milk, recognising the heterologous antigen; they were then 

incubated for an hour at RT. Membranes were washed with PBST three times at 1 min 

intervals. Then, they were incubated with appropriate secondary HRP-conjugate antibodies 

in PBST with 0.3% skimmed milk for 1h at RT. After washing the membranes three times 

with PBST (3 min intervals), signals were visualised by addition of an Amersham ECL prime 

Western blotting detection reagent (GE healthcare; RPN2232) and the membranes were 

developed on Amersham hyper-film ECL (GE healthcare; 28906836).  

 

2.11 Titration of thymine and thymidine (Chapter 3) 

To find the lowest concentration of both thymine and thymidine that is needed for 

the thyA thyB mutant growth, PY79 and SH14 (thyA::cotB-tcdA; thyB::cotC-tcdA) were 

grown in SMM supplemented with 0.2% (w/v) CAA and thymine (50 g/ml) for 8h. Then 

both PY70 and SH14 were sub-cultured (1:1,000) into different tubes containing fresh SMM 

supplemented with 0.2% (w/v) CAA and different concentrations of thymine and thymidine 

(Sigma; T9250). Tubes were incubated O/N at 37oC stirring. The optical density 600nm 

(OD600) of the cultures was measured after 16h. 
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2.12 Well diffusion assay (Chapter 3) 

An SMM agar supplemented with 0.2% (w/v) CAA and thymine (50 g/ml) was 

prepared and the agar was flooded with the 8h culture of SH14 grown in SMM broth 

supplemented with 0.2% (w/v) CAA and thymine (50 g/ml). Wells were made in the agar 

and into each well, 50 l of different concentrations (0, 100, 200, 500 g/ml) of adenosine 

(Sigma. A9251) was placed. Plates were incubated at 37oC for 48h. 

 

2.13 Thymine starvation (Chapter 3) 

An overnight SH14 culture in an SOC2 media supplemented with trimethoprim (6 

g/ml) and thymine (50 g/ml) was sub-cultured (1:100) into fresh SOC2 (2 X 20ml) 

supplemented with thymine (50 g/ml) only and incubated at 37oC. Once the OD600 reached 

from 0.5-0.6, the cultures were spun down (6,000 g, 10 min) and washed three times with 

sterile PBS (pH 7.4). After washing, pellets were resuspended in the same amount of SOC2 

media (20 ml) ± thymine. At different time intervals, 1 ml of each culture was removed, 

serially diluted and plated on both DSM and DSM supplemented with thymine (50 g/ml) 

and trimethoprim (6 g/ml).  

 

2.14 Stability of double thy-insertion (Chapter 3) 

A single colony of double thy mutant, SH14, was used to inoculate 20 ml of DSM 

supplemented with thymine (50 g/ml). After 24h, 1 ml of the culture was removed and 

plated on both DSM supplemented with thymine (50 g/ml) and DSM only. The same 

culture was sub-culture into two fresh DSM (20 ml each) one of which was supplemented 

with thymine and the other which wasn’t. This procedure was continued for five days.  
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2.15 Germination (Chapter 3) 

Purified spores of PY79, SH13, and SH14 were resuspended in distilled water to 

OD600 of 3 before activating them using heat at 70oC for 30 min. Heat activated spores were 

diluted 10-fold in 10mM Tris-HCl, with a pH of 8.4, to give a final OD600 of 0.3. After 15 

min incubation at 37oC, germination was initiated by addition of L-alanine (Sigma; 05130) 

to 10mM. At different time intervals (including time-point 0), 0.1 ml of the spore suspension 

was transferred to 10 ml of distilled water at 70oC. Spores were incubated at 70oC for 30 

min. Spores were then serially diluted and plated on DSM and DSM supplemented with 

thymine (50 g/ml) and trimethoprim (6 g/ml). 

 

2.16 Minimal inhibitory concentration (Chapter 3) 

To assess the minimal inhibitory concentration of Bacillus strains, the guideline 

proposed by the EFSA was used (with a slight modification for the double thy mutant).  

 

a) Preparation of culture 

20 ml of LB in 250 ml of Bellco (for the double thy mutant SOC2 was used) was 

inoculated with a single colony (1-4 days old) and incubated in a water bath shaker at 37oC 

until the OD600 of the culture reached from 0.6-0.8 (mid-log phase).  

 

b) Preparation of antibiotic dilution plates 

936l of Muller-Hinton broth (Oxoid; CM0405) was added into Eppendorf tubes 

followed by the addition of 64 l of 1 mg/ml of different antibiotics resulting in a final 

antibiotic concentration of 64 g/ml. Next, 300 l of each antibiotic (64 l/ml) was added 

to the first column of wells, for the 96 wells ELISA plate, and two-fold serial dilutions of 

each tested antibiotic in MH broth were prepared. 
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c) The minimal inhibitory concentration assay 

Once the OD600 of the culture reached from 06-0.8, 1 ml of the culture was removed 

and diluted in pre-warmed Muller-Hinton broth to OD600 of 0.15. Finally, 15 l of the diluted 

strain culture was added to each well of the ELISA plate described in panel b and was 

incubated O/N at 37oC. After O/N incubation, the OD600 of each well, using a microplate 

reader was measured. 

 

2.17 Growth curves (Chapter 3) 

To assess the fitness of the constructed strains, growth curves were plotted for each  

strain and were compared to the wild-type. Strains were grown overnight and sub-cultured 

into LB, DSM and SMM with a starting optical density 600nm (OD600) of 0.05 and then 

grown for 8 hours at 37oC. All media were supplemented with 50 g/ml of Thymine. OD600 

was measured every hour. 

 

2.18 Animal experiments  

All animal work was performed under the UK Home Office project license PPL 

70/8276. 

 

2.18.1 Persistence of spores in GI-tract (Chapter 3) 

For this study, Balb/c mice (females, aged 7-8 weeks) were used. Mice (n = 5) were 

administered a single dose of pure spores (2 X 109) of SH14 or SH250 by oral gavage. At 

different times thereafter, freshly voided faeces were collected (3-4 pellets) and 

homogenised and serial dilutions of SH14 were plated on (i) DSM and (iii) DSM + 

trimethoprim (6 g/ml) + thymine (50 g/ml) agar plates. SH250 colonies were plated on 
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DSM plates containing chloramphenicol (5 g/ml). Individual SH14 colonies were 

randomly checked for the presence of thy-insertions using PCR. 

 

2.18.2 Immunisation in mice (Chapter 4) 

For the immunogenicity studies, pathogen-free mice (C57 BL/6, females, aged 7 

weeks) were used. Immune responses to TcdA26-39 in serum and faecal samples were tested 

as described previously with some modifications (Permpoonpattana et al., 2011a). Groups 

of pathogen-free mice were dosed orogastrically (0.2 ml) with a dose of 5 × 1010 spores of 

PY79 or SH14 every 14 days (each group received four doses in total). A naïve group 

(unimmunised mice) was included in this experiment. On day -1, 34 and 51, blood and faeces 

were collected from the mice and stored at -80oC. Faeces extraction was done by 

resuspending (one-fifth w/v) in an extraction buffer (2% fetal calf serum [FCS], Dulbecco's 

modified Eagle's media [DMEM] plus protease inhibitor cocktails, trypsin [0.1 mg/ml], 

benzamide [1 μg/ml], phenylmethylsulfonyl fluoride [1 mM], and EDTA [0.05 mg/ml]). The 

resuspended faeces were gently shaken for 30 min at 4°C to disrupt solid material. Then the 

samples were centrifuged (13,000 rpm for 15 min) and the supernatants were filtered (0.45-

μm pore size) before analysis. The sera were separated from the cells and collected as 

described earlier (Section 2.9). The presence of anti-TcdA26-39 antibodies from faeces and 

sera were determined by indirect ELISA. 96-wells ELISA plates were coated with rTcdA26-

39 (10 mg/ml) in PBS and incubated overnight at 4oC. The next day plates were blocked for 

1 h at 37°C with 2% BSA. Next, 2-fold serially diluted samples were added, starting at a 

dilution of 1/100 for IgG or 1/5 for IgA, in diluent buffer (0.01 M PBS [pH 7.4], 0.5% [w/v] 

BSA, 5% [v/v] fetal bovine serum [FBS], 0.1% [v/v] Triton X-100, 0.5% [v/v] Tween 20) 

and incubated for 2h at RT. The preimmune serum was used as a negative control. 

Horseradish peroxidase-conjugated anti-mouse antibodies in conjugate a buffer (5% FBS 
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[v/v], 1% BSA [w/v], 0.05% Tween 20 in 0.01 M PBS) was added, and plates were further 

incubated for 1 h at RT. The plates were then developed using tetramethylbenzidine 

substrate, and the reactions were stopped using 2 M H2SO4. The ODs (optical densities) were 

read at 450 nm. 

 

2.18.3 Colonisation experiments of different C. difficile clades (ID50 determination) 

(Chapter 5) 

Groups of 4 C57BL/6 mice received a single dose of clindamycin orally (30 mg/kg)  

at day 1 and day 3. Mice were kept in IVC cages. At day 8, mice were infected with different 

amounts of spores ranging from 102 to 104 per mice. After 24h mice were culled, and the 

caeca removed aseptically. Caeca were reconstituted in a PBS buffer supplemented with 

protease inhibitor tablets (Thermo Scientific) using a ratio of 1:5 [weight of faeces (g): 

volume (ml)]. Caeca were then homogenised and incubated at 4oC for 2h. Finally, the caeca 

were spun down (10,000 g, 10 min, 4oC) and the supernatants which contained the toxins 

were removed into fresh tubes. Faeces were resuspended in dH2O, heated at 67oC for 30 min 

to kill the vegetative cells before they were serially diluted and plated on BHISS. Toxins 

were extracted by homogenising caecum in extraction buffer as described by Hong et al. 

(2017a) and toxins were detected by ELISA as mentioned in Section 2.18.2.   

 

2.19 Conjugation of anti-TcdA antibody to streptavidin, and detecting the conjugated 

antibodies by ELISA and immunofluorescence (Chapter 4) 

Polyclonal antibodies (rabbit; 100 g) raised to rTcdA26-39 protein were biotinylated 

using the Lightning-Link Rapid biotin conjugation kit type A (Innova Biosciences). Purified 

spores (1 X 109) of strain PY79 or spores expressing CotB-Streptavidin (SH16) in 200 l of 

PBS were mixed with 1 g of biotinylated antibody and incubated overnight at 4oC. Spores 
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were then washed four times with PBS (pH 7.4) and suspended in 1 ml of PBS. About 3 X 

108 of conjugated spores were used to coat microplate wells which were then probed with 

an anti-rabbit IgG-horseradish conjugate (1:5,000 in PBS plus 0.05% Tween-20) which was 

used as a secondary with 1h incubation at RT then washed three times followed by under-

going TMB (3,3’,5,5’-tetramethylbenzidine) colour development. For immunofluorescence, 

microscope coverslips were first treated with 0.01% poly-L-lysine overnight. ~5 X 106 

spores of SH16 or PY79 were added to the microscope slides and allowed to air dry (each 

microscope slide was placed in a 24 well plate). After three washes with PBS, slides were 

blocked with PBS containing 2% (w/v) BSA plus 0.05% (v/v) Tween-20 for 45 min at 37oC. 

Biotinylated anti-TcdA26-39 antibodies (1:300 dilution. 200l) were added to slides incubated 

for 30 min at RT and then washed three times with PBS + 0.05% (v/v) Tween-20. Rabbit 

FITC serum (Sigma F0382 at 1:200 dilution.) was added and the slides were incubated for 

30 min at RT. Image analysis was done using an EVOS fl LED microscope.  

 

2.20 Toxins subtraction assay (Chapter 4) 

a) Crude toxin preparation 

C. difficile strain R176 (tcdA+ tcdB+) was grown in TY broth (3% w/v tryptose, 2% 

w/v yeast extract and 0.1% w/v sodium thioglycolate) for 24h at 37oC. The cell-free 

supernatant was filter-sterilised and kept at 4oC till the assay. The minimum lethal 

concentration of supernatant required to cause 100% toxicity to HT29 cells was determined 

using 2-fold dilution and addition of the diluted lysate to HT29 cells using a cell rounding 

assay (Torres et al., 1992) to determine cell toxicity.  
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b) Preparation of cells  

The cell culture media for HT29 was freshly prepared by mixing McCoy’s 5A 

Modified Media without L-glutamine (Sigma: M8403), 2mM L-glutamine (Sigma: G7513), 

1% (v/v) solution of Penicillin-streptomycin (Sigma: P4333) and 10% FBS. A monolayer of 

HT29 cells in the T75 flask (70-90% confluent) was washed with 10 ml of Dulbecco’s 

phosphate buffered saline (DPBS) (Sigma: D8537). To detach the cells from the flask, 5 ml 

of Trypsin-EDTA (Sigma: T4049) was added and the cells were incubated for 4 min at 37oC. 

After incubation, 10 ml of freshly complete McCoy media was added to cells to inactivate 

the trypsin. The cell suspension was removed from the flask, transferred to a sterile 15 ml 

conical tube and centrifuged (200 g, 5 min) at RT. Then, the supernatant was removed, and 

the cells were resuspended in 10 ml of complete McCoy media. Once cells were counted 

using a haemocytometer, they were seeded (2 X 104) in 96-well plates (100l/ well). The 

plate was incubated in a humidified chamber (5% CO2) at 37oC for 24h.  

 

c) The assay 

For the assay, 109 pure spores of conjugated SH16 spores were added to 200 l of 

2% McCoy’s media containing the toxins (typically a 1/4000 dilution). The mixture was 

incubated for 5 min at RT and then cytotoxicity was assessed using HT29 cells and 

incubation for 24h. As a control, PY79 spores that had been mixed with TcdA26-39 antibodies 

(as described for SH16) were used in parallel. 

 

2.21 Enzyme activity (Chapter 4) 

Casein degradation activity was determined using the “Universal protease assay”, 

described by Sigma Aldrich, using casein as a substrate. Casein agar was 1% (w/v) casein, 

1% (w/v) skimmed milk and 1.2% (w/v) agar technical No. 2, Oxoid. The agar was 
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supplemented with a cocktail of antibiotic (trimethoprim; 10 g/ml, Chloramphenicol; 30 

g/ml, Erythromycin; 30 g/ml). After 24h incubation at 37oC, the plate was flooded with 2 

ml of bromocresol green and incubated for 30 min at RT. Amylase activity in the liquid was 

measured as described (Bernfeld, 1955). Production of active amylase was tested by 

applying suspensions of spores (volume of 20 l) to the agar plates carrying only soluble 

starch (1% w/v) and beef extract (0.3% w/v) and, also, three antibiotics (trimethoprim 10 

g/ml, chloramphenicol 30 g/ml and erythromycin 30 g/ml). Antibiotics were used to 

prevent any bacterial growth on the plates ensuring that activity arose from dormant spores 

only. Plates were incubated for 48h at 37oC after which the plate was flooded with Lugol 

solution (Sigma) for 2 min to reveal zones of starch degradation. Units of amylase activity 

were determined as described by Bernfield (Bernfeld, 1955). 

 

2.22 Crude DNA extraction (Chapter 5) 

A two-day-old C. difficile colony, grown on BHIS agar, was resuspended in 300l 

of nuclease-free water containing 5% Chelex® 100 (Sigma; C7901). The sample was then 

incubated at 100oC for 20 min. After that, it was spun down (18000 g, 10 min) and the top 

50l, containing the crude DNA was removed into a fresh eppendorf.  

 

2.23 PCR ribotyping (Chapter 5) 

This method used here is first described by Bidet (Bidet et al., 1999) with slight 

modification (Bidet et al., 1999). Two primers that amplify the intergenic spacer region be-

tween 16S and 23S of ribosomal RNA were used. Primer sequences were 5’-GTGCGGCTG-

GATCACCTCCT-3’ (16S primer) and 5’-CCCTGCACCCTTAATAACTTGACC-3’ (23S 

primer). PCR reaction mixes were made in 50l of volume using GoTaq® G2 Hot Start 

Polymerase (Promega; M7401). The PCR reaction mix contained 10l of 5X Colourless 
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GoTaq® Flexi Buffer, 4l of MgCl2 (25M solution), 1l of PCR Nucleotide Mix (10mM 

each), 1l of both up and downstream primers (10mM), 3l of crude DNA, and 1l of 

GoTaq® G2 Hot Start Polymerase. The conditions for amplification were as follows: 1 cycle 

of 6 min at 94oC, followed by 35 cycles of 1 min at 94oC, 1 min at 57oC and 1 min at 72oC 

and a final extension of 5 min at 72oC. Then using 3% agarose gel containing 0.1% SYBR 

safe DNA gel stain (Invitrogen; S33102), the amplified products were fractionated. A gel 

image was taken using a BioRad Gel Doc system. The gel profiles were then analysed using 

“Applied math” software and different profiles were sent to Leeds (Reference Laboratory, 

Leeds General Infirmary) to identify the ribotypes.  

 

2.24 Amplification of tcdA and tcdB genes (Chapter 5) 

A PCR reaction amplifying ~3kbp of tcdA using primer forward 

5'TTATCAAACATATATTTTAGCCATATATC-3’ and primer reverse 5'-TATTGA-

TAGCACCTGATTTATATACAAG-3', and ~3kbp of tcdB using primer forward 5'-CAGA-

TAATGTAGGAAGTAAGTCTATAG-3' and PCR reverse 5'-AGAAAATTTTATGAG-

TTTAGTTAATAGAAA-3' was performed. GoTaq® G2 Hot Start Polymerase (Promega; 

M7401) was used to amplify these regions. PCR reactions were set up like PCR ribotyping  

reactions. Two-step PCR conditions for both tcdA and tcdB are summarised in the table 

below (Table 2.4).  
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2.25 Identification of different bclA genes (Chapter 5) 

To identify different types of bclA genes, each bclA1, 2 and 3 has been amplified  

from crude DNA, using the same polymerase and reaction mix stated in section 2.23. The 

primers used to amplify these genes and the PCR conditions are summarised in the table 

below (Table 2.5). The amplified products were checked using agarose electrophoresis and 

DNA sequencing. 

 

2.26 Sporulation of C. difficile (Chapter 5) 

O/N cultures of different C. difficile strains in BHIS were sub-cultured (1 in 1,000) 

into 20 ml fresh BHIS. After 8h incubation, the cultures were sub-cultured into fresh 20 ml  

BHIS to ensure no spores were present at time point 0. At different time points, 1 ml of each 

culture was removed, heated (68oC, for 30 min), serially diluted and plated on BHIS agar 

containing 0.1% of sodium taurocholate.  

 

Steps tcdA  tcdB  

Initiation 

 

 

Annealing & 

extension 

  

 

Final extension 

93°C, 3 min 

 

 

35 cycles 

47°C, 8 min 

93°C, 3 sec 

 

47°C, 10 min 

93°C, 3 min 

 

 

35 cycles  

57°C, 8 min 

93°C, 3 sec 

 

47°C, 10 min 

Table 2.6: PCR conditions for amplification of tcdA 

and tcdB 
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2.27 Toxin A and toxin B titration 

Cell were prepared according to section 2.20b (except where Vero cells DMEM was 

used). Different strains were grown O/N in 10 ml TY broth (3% w/ v bacto-tryptose, 2% w/v 

yeast extract and 0.1% w/v thioglycolate, adjusted to pH 7.4) under anaerobic conditions. 

Before centrifugation and sterilisation, the cell density of different cultures was standardised. 

Genes  Primers sequence  PCR condition  Region 

amplified  

 

 

bclA1 

(set 1) 

 

 

5’-AGCTAAGCCAGTCAAGG-3’ 

5’-CAATTAAGCTGTCTTCTGC-3’ 

95°C, 5 min 

 

35 cycles  

95oC, 30 sec 

45°C, 30 sec 

72oC, 30 sec 

 

72°C, 5 min 

 

 

 

Amplification 

of 621 bp, 

also to check 

the truncation 

of bclA1 

 

 

 

bclA1 

(set 2) 

 

 

5’-AAATCTGTTACTGTAGAAA-3’ 

5’-CAATTAAGCTGTCTTCTGC-3’  

95°C, 5 min 

 

35 cycles  

95oC, 30 sec 

40°C, 30 sec 

72oC, 3 min 

 

 72°C, 5 min 

 

 

Amplification 

of 3189 bp, 

also to check 

the deletion 

of bclA1 

 

 

 

bclA2 

 

5’AGTGATATTTCAGGTCCAAGTT 

TATATC-3’  

5’TTGTATTCTATAAACTGATACA 

TATCCAGC-3’ 

95°C, 5 min 

 

35 cycles  

95oC, 30 sec 

50°C, 30 sec 

72oC, 1 min 40 sec 

 

72°C, 5 min 

 

 

Amplification 

of 1671 bp to 

check the 

presence of 

bclA2 

 

 

 

 

bclA3 

 

 

5’-GACCATTTGATGATAATGATTAC-3’ 

5’- CGCTCCTGTTGGACCTATTAATCC-3’ 

95°C, 5 min 

 

35 cycles  

95oC, 30 sec 

43°C, 30 sec 

72oC, 40 sec 

 

72°C, 5 min 

 

 

 

Amplification 

of 557 bp to 

check the 

presence of 

the bclA3 

 

Table 2.7: Primers and PCR conditions for amplification of different bclA genes 
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The filtrates were diluted in two-fold series and were added onto monolayers of Vero and 

HT29 cells. Cytotoxicity was recorded after 24 h.  

 

2.28 Statistical analysis  

To compare between the groups, an unpaired t test was used. A p value of >0.05 was 

considered non-significant.  
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CHAPTER 3 

DEVELOPMENT OF A NOVEL SPORE 

 CLONING SYSTEM 
 

3.1 Introduction 

Genetic manipulation of bacterial spores of the genus Bacillus has shown potential 

for vaccination and delivery of drugs or enzymes (Potot et al., 2010, Ning et al., 2011, 

Nguyen et al., 2013). Remarkably, proteins displayed on the spore surface retain activity and 

generally are not degraded (Ning et al., 2011). Despite the potential utility of Bacillus spores 

for industrial applications, there remain a number of obstacles relating to the deliberate 

release of genetically modified Bacillus into the environment. First, is the use of an 

antibiotic-resistance gene used in the engineering of stable recombinant strains. The majority 

of procedures requiring insertion of heterologous DNA into a host require ectopic insertion 

using an antibiotic-resistance gene for positive selection (Shimotsu and Henner, 1986). 

Plasmid vectors carrying chloramphenicol-resistance or erythromycin-resistance genes are 

typically used for ectopic insertion at a genetic locus that is redundant for cell growth, 

commonly the amylase E (amyE) or threonine C (thrC) genes (Guérout-Fleury et al., 1996). 

For instance, pDG364 (6257 bp) is a suicide vector that has been designed to integrate inserts 

into the amyE locus of the B. subtilis 168 chromosome (Cutting, 1990). It contains the left 

and right homology arms for amyE, interrupted between the two arms, a multiple-cloning 

site and a chloramphenicol-resistance gene (Figure 3.1). Once the plasmid is linearised, it 

enables the insertion of cloned DNA via double-crossover, at the amyE locus. The cat gene 
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is used as a selection marker. Also, the insertion at the amyE locus creates an Amy- 

phenotype (Cutting and Vander Horn, 1990).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The use of antibiotics in cloning procedures as a selection marker gene can have 

various consequences such as dissemination in the environment, causing the spread of 

resistant bacteria and emergence of new resistant or multi-resistant pathogenic bacterial 

strains (Mignon et al., 2015). The potential risk of antibiotic-resistance gene transfer 

following release is recognised and so now there are at least two systems in B. subtilis that 

Figure 3.1: Schematic diagram of pDG364. The two amyE are the left and right 

homology arm of complete amyE gene. The cat (chloramphenicol acetyltransferase) and 

bla (-lactamase) represent the chloramphenicol and ampicillin resistance genes 

respectively. The multiple-cloning site consisting of BamHI, EcoRI and HindIII is 

located in between the left homology arm of amyE and the chloramphenicol-resistance 

gene. ori is the origin of replication. The plasmid, in total, is 6257 bp. (Figure taken from 

Bacillus genetics stock centre website, http://www.bgsc.org).  

http://www.bgsc.org/
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have been described which enable insertion of heterologous genes without the introduction 

of an antibiotic-resistance gene (Bloor and Cranenburgh, 2006, Iwanicki et al., 2014).  

 

The second, and most challenging, hurdle is the ultimate fate of recombinant spores; 

once released as spores, they have been shown to be able to survive indefinitely in the 

environment (Cano and Borucki, 1995b). The soil is generally enriched with dormant spores 

(Nicholson et al., 2000) and their robustness makes it difficult to argue that they would not 

persist after deliberate release. One approach might be to construct germination deficient 

spores but, at best, the germination rate can be reduced to 0.0015% (Mauriello et al., 2007) 

which is unlikely to satisfy regulatory authorities. Another approach that could be considered 

is that of thymine starvation since prokaryotes carrying a mutated thymidylate synthase are 

unable to grow in low concentrations of thymidine or thymine, resulting in cell death. 

Thymine, also known as 5-methyluracil, is a pyrimidine, required for DNA synthesis. Since 

thymine (or thymidine) is not readily found in nature other than in the DNA of living cells, 

this would result in what is known as a ‘thymine-less death’ (Goulian et al., 1986, Ahmad 

et al., 1998). A thymine-less death has been documented for B. subtilis (Rolfe, 1967). Two 

genes of B. subtilis, thyA, and thyB encode a thymidylate synthase enzyme that is responsible 

for the production of thymine. Mutation of both these genes leads to a strain that lacks 

thymidylate synthase and as a result, the strain becomes a thymine auxotroph. Also, 

deactivation of thyA and thyB will enable the strain to become trimethoprim resistant which 

can be used as a selective marker.  

 

The antibiotic trimethoprim can disrupt the folate pathway by inhibiting the 

thedihydrofolate reductase enzyme, which leads to the synthesis of purine and pyrimidine 

being blocked as well as a block in the synthesis of some key amino acids (Figure 3.2) 
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(Neuhard et al., 1978). If both thy genes are mutated by insertion of a chimeric gene that 

encodes for an antigen fused to the B. subtilis spore coat protein such as CotB, then the 

outcome could be a strain of B. subtilis that is thymine auxotroph and displays chimeric 

protein on its spore surface. Therefore, the principles of a thymineless death to exploit 

Bacillus for the introduction of heterologous genes without the introduction of antibiotic 

genes can be adopted. If these recombinant spores dessiminate into the environment and 

germinate, they would exhibit a thymineless death due to rapid cessation of metabolism and 

fail to survive. The method described in this chapter has been validated using a number of 

examples and solves a problem arising from the need to contain spore GMOs in the 

environment. 

 

3.2 Aim 

The aim was to develop a cloning system that results in B. subtilis recombinant spores 

expressing heterologous protein on their surface without using an antibiotic-resistance gene 

as a selection marker. Both the thyA and thyB genes (encoding for thymidylate synthase 

required for thymine synthesis) of PY79 will be mutated by inserting heterologous genes 

fused to genes that encode proteins on the PY79 spore coat, resulting in expression and 

display chimeric proteins on the surface of the spores. The thyA thyB insertion mutant strains 

become thymine dependant entirely (thymine auxotroph). The resulting recombinant strains 

will be characterised for their growth in different growth media, sporulation, the stability of 

the double cross-over and their persistence in the mice GI-tract.  
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Figure 3.2: The action of trimethoprim on the folate pathway. Trimethoprim inhibits 

the enzyme dihydrofolate reductase (DHFR) which is required for production of 

dihydrofolate (DHF) from dihydropteroate (DHP) as well as for synthesis of 

tetrahydrofolic acid (THF). This prevents synthesis of methylenetetrahydrofolic acid 

(MTHF) and synthesis of both purines and pyrimidines. In B. subtilis, thymidylate 

synthase A (TSase A) and thymidylate synthase B (TSase B) use MTHF to produce the 

pyrimidines, thymidine and thymine. Inactivation of both thymidylate synthase enzymes 

is lethal unless exogenous thymine (or thymidine) is supplied. Also shown is para-

aminobenzoic acid (PABA) which is a component of folic acid and serine 

hydroxymethyltransferase (SHMT). 
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3.3 Results 

3.3.1 Construction of B. subtilis recombinant strains 

To mutate the thyA gene by inserting the chimeric gene, purified pThyA plasmids 

were transformed into competent cells of PY79. The transformants were recognised by their 

inability to grow at 46oC without thymine supplementation. Typically, transformation 

frequencies were about 2 x 103/g of competent cells with about 15-20% of colonies carrying 

the correct insertion. After the first mutation, pThyB was introduced into a thyA mutant strain 

via electroporation and trafnsformants were plated on SMM supplemented with CAA, 

thymine, and trimethoprim, and strains carrying insertions at thyA and thyB were identified 

by their failure to grow at both 37oC and 46oC in the absence of thymine. Figure 3.3 shows 

the schematic diagram of the two-step, ectopic cloning system. 

 

Using this two-step process, different strains carrying insertions at the thyA and thyB 

loci were constructed (Table 3.1). These included strains carrying insertions of one or two 

different proteins on the spore surface by fusion with different spore coat anchors (cotB and 

cotC). For each strain constructed in Table 3.1, using nucleotide sequence analysis, the 

integrity of the thyA or thyB insertion was confirmed. 

 

Neuhard et al. (1978) reported that inactivation of thy genes in B. subtilis would 

render the strain resistant to trimethoprim (Neuhard et al., 1978). Thus, the level of resistance 

of the thyA and thyA thyB insertional mutants to trimethoprim relative to wild-type PY79 

was evaluated (Table 3.1). For that purpose, a minimal inhibitory concentrations (MIC) test 

to determine the lowest amount of trimethoprim needed to inhibit the mutant strains growth 

was performed. The procedure was performed by a method of serial dilutions of 

trimethoprim in SOC2 broth supplemented with thymine. As expected, the determined  
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Figure 3.3: Schematic diagram of thyA thyB construction. To construct ectopic 

insertions at the thyA and thyB loci of B. subtilis, two steps are required. In step 1 a 

pThyA plasmid carrying a chimeric gene is linearised (ApaLI or ScaI digestion) and 

introduced into cells of a wild-type B. subtilis strain (in this case strain PY79) by DNA-

mediated transformation. Trimethoprim-resistant transformants are selected on an SMM 

agar containing trimethoprim (3 g/ml) and thymine and carry an insertion of 

homologous thyA DNA together with the chimeric gene, by marker replacement, as 

shown. In the second step, linearised plasmid DNA of a pThyB vector carrying the same 

or a different chimeric gene is introduced by electroporation into cells of the thyA 

insertion strain created in the 1st step. Selection for trimethoprim resistance is made on 

the SMM agar supplemented with CAA, trimethoprim (6 g/ml) and thymine. 
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minimal inhibitory concentration value of trimethoprim for the thyA and thyA thyB 

insertional mutants was much higher than the wild-type PY79 with an minimal inhibitory 

concentration of 16 g/ml and >64 g/ml respectively. After the integration of the fusions 

gene into the thy genes was confirmed, the next step was to check if the fusion proteins are 

expressed and displayed on the spore surface. For that purpose, Western blotting was 

performed using the recombinant spore coat extracts. When extracted spore coat proteins 

from purified spores were subjected to Western blotting, immunoreactive bands of the 

 

Strain 

 

Genotype 

37oC1 46oC1 MIC2 
(g/ml) 

+ thy - thy + thy - thy 

PY79 thyA+ thyB+ + + + + 0.25 

SH11 thyA::cotC-vp26 + + + - 16 

SH12 thyA::cotC-vp26 

thyB::cotB-vp28 

+ - + - >64 

AC01 thyA::cotB-vp28 + + + - 16 

AC02 thyA::cotB-vp28 

thyB::cotB-vp28 

+ - + - >64 

SH13 thyA::cotB-tcdA26-39 + + + - 16 

SH14 thyA::cotB-tcdA26-39 

thyB::cotC-tcdA26-39 
+ - + - >64 

SH15 thyA::cotB-SA + + + - 16 

SH16 thyA::cotB-SA 

thyB::cotB-SA 

+ - + - >64 

SH17 thyA::cotB-amyE + + + - 16 

SH18 thyA::cotB-amyE 

thyB::cotB-MCS3 
+ - + - >64 

SH19 thyA::cotB-aprE + + + - 16 

SH20 thyA::cotB-aprE 

thyB::cotB-MCS 

+ - + - >64 

Table 3.1: Phenotypes of B. subtilis recombinant strains. 

1 Growth (+) or no growth (-) on SMM agar with or without thymine (50 g/ml) 

2 Minimal inhibitory concentration (MIC; g/ml) of trimethoprim determined using a microdilution method   

3 Multiple-cloning site 



Chapter 3: Development of a novel spore cloning system 

 

69 

 

expected molecular weight of each protein were seen (Figure 3.4). As a further verification, 

whole-spore ELISA was performed for the confirmation of the presence of chimeric proteins 

on the spore surface (Figure 3.5). Figure 3.5A and Figure 3.5B show surface detection of 

the TcdA26-39 antigen and VP28 respectively by whole-spore ELISA. Production of the 

TcdA26-39 antigen at both the thyA and thyB loci (SH14 in Figure 3.5A) was higher than the 

expression at one locus (i.e., thyA, SH13). Using polyclonal antibodies to detect VP28, 

expression levels of strains carrying cotB-vp28 inserted at thyA (AC01) or at both thyA and 

thyB (AC02) were examined (Figure 3.5B). The ELISA result showed that the expression 

of the VP28 antigen at both the thyA and thyB loci was greater than expression at one locus, 

an indication that having two inserts of the same gene results in higher expression of the 

protein on the spore surface. 

 

3.3.2 Growth of the thyA thyB insertional mutants in different media 

a) Growth in minimal media 

 Both thy gene are essential to maintain the folate cycle responsible for synthesis and 

also critical for cell survival and both pathways involve the synthesis of some key amino 

acids (Neuhard et al. 1978). Therefore, there is a possibility that mutating one or both thy 

genes would render the growth of these strains in comparison to wild-type, although 

supplementing the growth media with thymine. For that purpose, the growth of the 

insertional mutants in a minimal SMM media has been examined. Figure 3.6 shows 

examples of strains carrying cotB-tcdA26-39 and cotC-tcdA26-39 insertion at thyA (SH13) or 

both thyA and thyB (SH14) loci. The thyA insertion strain grew normally with or without 

thymine supplementation (Figure 3.6B) and was indistinguishable from wild-type PY79 

growth (Figure 3.6A).  
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Figure 3.4: Spore coat expression. B. subtilis strains carrying insertions at the thyA and thyB loci were examined by Western blotting of 

spore coat proteins extracted from preparations of pure spores. Each panel shows bands obtained in extracts of wild-type spores (PY79) or 

spores carrying thyA and thyB insertions (AB) or in panel D spores carrying only a thyA insertion (panel A). Panel A and B show analysis 

of SH12 (thyA::cotB-vp28 thyB::cotC-vp26) with anti-VP28 and anti-VP26 antibodies. Panel C shows analysis of SH14 (thyA::cotB-tcdA26-

39 thyB::cotC-tcdA26-39). Panel D, shows SH15 (thyA::cotB-streptavidin (SA)) and SH16 (thyA::cotB-SA thyB::cotB-SA). The size of each 

band is: CotC-VP26; 31 kDa, CotB-VP28; 63 kDa, CotC-TcdA26-39;49 kDa, CotB- TcdA26-39; 69 kDa, and CotB-SA; 56 kDa. 
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Figure 3.5: Surface expression determined by “Whole Spore ELISA”. Panel A: Microtiter plates were coated with spores (2 X 108/well) 

of PY79 (spo+), PP108 (amyE::cotC-tcdA26-39 thrC::cotB-tcdA26-39), SH13 (thyA::cotB-tcdA26-39) and SH14 (thyA::cotB-tcdA26-39; 

thyB::cotC-tcdA26-39) and then probed with either anti-spore (1:1,000) or anti-TcdA26-39 (1:500) rabbit polyclonal antibody. Secondary 

polyclonal antibodies were 1:5,000 and naive serum was used for comparison, and basal levels were subtracted. Panel B: same as for Panel 

A but using spores of PY79, AC01 (thyA::cotB-vp28) and AC02 (thyA::cotB-vp28; thyB::cotB-vp28) probed with either anti-spore (1:1,000) 

or anti-VP28 (1:300) rabbit polyclonal antibody. Stripped bars represent the detection of spores and grey bars represent the detection of the 

chimeric proteins. This experiment was replicated three times.  
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By contrast, the thyA thyB insertion strain was thymine dependent but, in the presence 

of thymine, had reduced fitness as shown from the lower maximal OD (Figure 3.6C). Since 

the optimal growth of thyA thyB insertion mutants by supplementing SMM with thymine was 

not fully restored, it suggests that other pathway/molecules could have been affected by the 

absence of a functional thymidylate synthase. Thus, the growth of thyA thyB insertional mutants 

in SMM using additional supplements, to achieve optimal growth, was further investigated.  

 

Mutating the thy genes can also result in disruption of glycine and purine synthesis, and 

since the folate pathway is also connected to the salvage cycle (Ferla and Patrick, 2014), the 

synthesis of methionine will also be affected (Kwon et al., 2010, Nixon et al., 2014). The purine 

that is affected by disruption of the folate pathway in E. coli was shown to be adenine. It has 

been previously reported that supplementing the minimal media with CAA and adenine can 

restore the growth of thymineless E. coli to full saturation (Amyes and Smith, 1974). Therefore, 

the growth of double thy-insertional mutants in SMM supplemented with CAA, adenine and 

thymine with and without trimethoprim was measured (Figure 3.7). In the presence of 

trimethoprim, growth was optimal, reaching a maximal OD600 of ~2 in SMM containing either 

CAA and thymine or CAA, adenine and thymine. The growth was suppressed/slowed in the 

media supplemented with only thymine and adenine. This indicates that supplementing minimal 

media with CAA and thymine can fully restore the growth of the thyA thyB mutant strains. To 

further investigate the effect of the double thy mutation on amino acid synthesis in the folate 

and salvage pathway and to check whether by supplementing the depleted amino acids (glycine 

and methionine) full growth could be restored, the growth of a thyA thyB insertion strain (SH14) 

in an SMM supplemented with thymine and either methionine, serine, glycine or a mixture of 

these supplements with or without trimethoprim was measured. SH14 in an SMM supplemented 

with thymine an CAA with or without trimethoprim was used as a control for  
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Figure 3.6: Growth of the PY79, thyA and thyA thyB strains in 

minimal media. Wild-type PY79 (panel A), SH13 thyA::cotB-

tcdA26-39 (panel B) and SH14 thyA::cotB-tcdA26-39  thyB::cotC-

tcdA26-39  (panel C) were grown in the SMM media at 37oC with or 

without thymine supplementation (50 g/ml). The starting OD600 of 

each culture was 0.05. This experiment was replicated twice. 
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Figure 3.7: Growth of thyA thyB mutant in SMM media. Growth at 37oC of SH14 in an SMM media using different supplements as 

indicated (thymine 50 g/ml, 0.2% CAA (w/v), Adenine (20g/ml)). Media were supplemented with trimethoprim (3g/ml) in panel A and 

no trimethoprim in panel B. As a control B. subtilis strain PY79 was also evaluated for growth in SMM with no supplements. ▲: SMM + 

thymine, ■: SMM + thymine + CAA, ●: SMM + thymine + CAA + adenine, ♦: SMM only, □: PY79 in SMM only, ○: SMM + thymine + 

adenine. This experiment was replicated twice. 
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optimum growth. The results indicated that the growth of SH14 in SMM with different 

supplements other than CAA was the same as SH14 growth which was only supplemented 

with thymine. This result suggests that the synthesis of other amino acids or molecules 

required for the optimal growth of the thyA thyB might have been affected (Figure 3.8). 

 

b) Growth in rich media 

The growth of the thyA and thyA thyB insertional mutant strains at 37oC in an LB and 

DSM media was assessed, to check if the rich media would affect the growth of the mutant 

differently than PY79. Without thymine, in both LB and DSM, strains carrying the insertion 

in both thyA thyB showed no growth while the strain carrying the insertion in thyA only grew 

normally (Figure 3.9B and Figure 3.9D). In the presence of thymine, strains carrying 

insertions at the thyA locus grew normally yet, unexpectedly, strains carrying thyA thyB 

insertions were severely affected. In LB supplemented with thymine, cells of a thyA thyB 

insertion strain showed no growth (Figure 3.9A) while in DSM, growth was markedly 

reduced with a reduced OD (Figure 3.9C).  
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Figure 3.8: Growth of the thyA thyB mutant in SMM media with different amino acids. Growth at 37oC of SH14 in an SMM media 

with different supplements as indicated (thymine (50 g/ml), 0.2% CAA (w/v), glycine (50 g/ml), serine (50 g/ml) and methionine (50 

g/ml)). Media in panel A were supplemented with trimethoprim (6 g/ml) and panel B were without trimethoprim. ▲: SMM + thymine, 

■: SMM + thymine + CAA, ▼: SMM + thymine + glycine, Δ: SMM + thymine + methionine, □: SMM + thymine + glycine + methionine 

+ serine, ○: SMM + thymine + serine, ♦: SMM only. This experiment was replicated twice. 
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Since the thyA thyB insertion mutant strains were not growing in LB supplemented 

with thymine, it seemed possible that one or more components of LB were inhibiting the 

growth. Thus, the growth of the strain thyA thyB in the LB media supplemented with thymine 

and with varying levels of yeast extract (YE), a component of LB, was assessed. The optimal 

growth of the thyA thyB was noted in the media containing 0 and 1 mg/ml of yeast extract 

and yet the growth did decrease in LB containing 2 mg/ml of YE (Figure 3.10). The 

concentration of 3, 4 and 5 mg/ml of yeast extract have completely abolished the growth of 

Figure 3.9: Growth of PY79, thyA and thyA thyB insertion strains in rich media. 

Growth at 37oC of PY79 (■), SH13 (●) and SH14 (▲) were measured in: Panel A: LB 

with thymine (50 g/ml); panel B: LB without thymine; panel C: DSM with thymine (50 

g/ml) and panel D: DSM without thymine. This experiment was replicated twice. 
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the thyA thyB mutant. However, increasing concentration of yeast extract has increased the 

growth of wild-type PY79. These results indicate that the presence of ≥2 mg/ml of yeast 

extract in LB inhibited the growth of the strains carrying two thyA thyB insertions.  

 

To determine whether tryptone (another component of LB) might have an inhibitory 

effect on the thyA thyB, the use of a growth media other than LB was necessary. Since SOC2 

media contain tryptone and no yeast extract, then the growth of the thyA thyB mutant with 

different concentrations of tryptone in SOC2 was measured. Increasing the concentration of 

tryptone leads to higher growth of the thyA thyB, with a similar benefit as for PY79 (Figure 

3.11). This observation indicates that tryptone had no inhibitory effect on the thyA thyB 

mutant growth.  

 

The inhibitory effect of yeast extract could be due to adenosine, contained in yeast 

extract, as it has been previously shown that adenosine has a bactericidal effect against 

thyminless E. coli (Kinoshita et al., 1969). Therefore, the effect of adenosine on the thyA 

thyB insertion strain (SH14) was investigated using an agar well diffusion assay (Figure 

3.12). However, no inhibitory effect caused by the different concentration of adenosine on 

the thyA thyB mutant was observed suggesting that the inhibitory effect is not due to 

adenosine only. Yeast extract (5 mg/ml) and sterile dH2O were used as positive and negative 

control respectively.  
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Figure 3.10: Growth of thyA thyB insertion strain in rich media with different concentrations of yeast extract. Growth at 37oC of 

PY79 (panel A), and SH14 (panel B) were measured in LB supplemented with thymine (50 g/ml) with different concentrations of yeast 

extract, (●) 0 mg/ml, (■) 1 mg/ml, (▲) 2 mg/ml, (▼) 3 mg/ml, (♦) 4 mg/ml and (○) 5 mg/ml. This experiment was replicated twice. 
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Figure 3.11: Growth of thyA thyB insertion strain in rich media with different concentrations of tryptone. Growth at 37oC of PY79 

(panel A), and SH14 (panel B) were measured in SOC2 supplemented thymine (50 g/ml) and different concentrations of tryptone, (●) 0 

mg/ml, (■) 2 mg/ml, (▲) 4 mg/ml, (▼) 6 mg/ml, (♦) 8 mg/ml and (○) 10 mg/ml. This experiment was replicated twice. 
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3.3.3 Sporulation of thyA thyB mutants 

Since one of the goals of the thy-insertion cloning system is to produce spores that 

display chimeric proteins on their spore surfaces, it was important to investigate whether the 

sporulation of the thyA thyB mutants was affected. To check this, sporulation of the thyA and 

thyA thyB insertional mutant relative to PY79, in DSM, was measured. In comparison to 

PY79, the thyA and thyA thyB mutant had a similar percentage of sporulation, indicating that 

the mutation of thyA and/or thyA thyB does not affect sporulation (Table 3.2).  

 

3.3.4 Different types of colony after the first genetic cross  

Following the first genetic cross (thyA insertional mutation), two colony types were 

apparent on the SMM supplemented with thymine (50 g/ml) and trimethoprim (3 g/ml)  

Figure 3.12: Effect of adenosine on the growth of SH14. An SMM agar plate 

supplemented with thymine and 0.2% (w/v) CAA was flooded with SH14 culture in an 

SOC2 media and grown for 8h. Wells were made in an SMM agar and into each well, a 

different concentration of adenosine ranging from 0 to 500 g/ml was added.  
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plates (Figure 3.13). Type 1 were large opaque colonies (2-3mm) and carried the correct 

insertion at the thyA locus as confirmed both by PCR and sequencing. Type 2 colonies were 

translucent, smaller (1mm) and grew slower than type 1. The type 2 colonies, after 96h, 

Strain  Genotype  Total Count2 Heat count3 % Sporulation 

PY79 thyA+ thyB+ 2.8 x 108 2.4 x108 85.7 

SH11 thyA::cotC-vp26 1.9 x 108 1.6 x108 82 

SH12 thyA::cotC-vp26 

thyB::cotB-vp28 

2 x 108 1.5 x 108 75 

AC01 thyA::cotB-vp28 2.6 x 108 2.2 x 108 85 

AC02 thyA::cotB-vp28 

thyB::cotB-vp28 

1.9 x108 1.5 x 108 78.6 

SH13 thyA::cotB-tcdA26-39 2.2 x108 1.8 x 108 85 

SH14 thyA::cotB-tcdA26-39 

thyB::cotC-tcdA26-39 
2.5 x108 1.9 x108 77.2 

SH15 thyA::cotB-SA 2.8 x 108 2.3 x 108 82 

SH16 thyA::cotB-SA 

thyB::cotB-SA 

3.1 x 108 2.4 x 108 77.4 

SH17 thyA::cotB-amyE 7.4 x 108 6.1 x 108 82.5 

SH18 thyA::cotB-amyE 

thyB::cotB-MCS 
1.28 x 108 9.8 x 107 76.5 

SH19 thyA::cotB-aprE 4.1 x 108 3.7 x 108 90 

SH20 thyA::cotB-aprE 

thyB::cotB-MCS 

8.1 x 107 6.8 x 107 83.9 

Table 3.2: Percentage sporulation of the PY79, thyA and thyA thyB insertional 

mutants1 

1 Different strain were grown for 24h in DSM supplemented with thymine (50 g/ml); after 24h, untreated 

and heated (65oC, 1h) culture were plated on appropriated plates. This experiment was replicated twice. 

2 Untreated CFU/ml  

3 Heat treated CFU/ml 
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represented approximately 2/3 of all colonies present on the plate. When investigated by 

PCR, it was confirmed that only type 1 colonies carried the thyA insertion. The type 2 

colonies, although they showed the correct phynotype as thyA insertion mutant, they showed 

no insert in their thyA gene. Therefore, only type 1 colonies were used for the second step. 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.5 Thymine and thymidine titration  

 

As well as thymine, thymidine could be used for growth of thymineless E. coli (Boyle 

and Jones 1970). To find out the lowest concentration of both thymine and thymidine needed 

for optimal growth of the thyA thyB mutant, an end-point titer test was performed. The 

growth of PY79 and SH14 in SMM supplemented with 0.2% (w/v) CAA, and various 

concentrations of thymine and thymidine were evaluated. SH14 in SMM supplemented 

either with thymine (50 g/ml) or thymidine (50 g/ml) was used as a control. Both strains 

were allowed to grow for 16h at 37oC in SMM supplemented with CAA and different 

Figure 3.13: Different types of colony after first crossover. The growth of two types 

of colony on an SMM supplemented with 3g/ml of trimethoprim and 50 g/ml of 

thymine. Type 1 are large opaque colonies, and type 2 are small translucent colonies.  
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concentrations of thymine and thymidine. The results indicated that for optimal growth of 

SH14, 15 g/ml of thymine or 20 g/ml of thymidine was required (Figure 3.14).  

 

3.3.6 Elimination of thymine and thymidine from the growth media 

Elimination of thymine in minimal media will lead to loss of viability of thyminless 

E. coli (Amyes and Smith, 1974). To test the viability of SH14 after thymine elimination, 

SH14 was grown to an OD600 of 0.5-0.6 in SOC2 supplemented with thymine before 

eliminating thymine. Thymine was eliminated by centrifugation of the cells and washing the 

pellet with PBS. At different time points thereafter, 1 ml of cells were removed and plated. 

The result shows that the CFU count of SH14 after eliminating thymine was significantly 

reduced compared to the control (+thymine) (Figure 3.15). This indicates that elimination 

of thymine causes a bactericidal effect on the cells of the thyA thyB insertional mutant. 

 

3.3.7 Reversion  

Although a mutation that occurs by a double cross-over recombinational event is 

stable there exists the possibility of acquisition of a compensatory suppressor or bypass 

mutation (Comas et al., 2012). Thus, an experiment to test the stability of the inserts in SH14 

was conducted by growing it in DSM supplemented with thymine. Every 24h the growth 

cultures were sub-cultured into two fresh 20 ml DSM broths, one of which was supplemented 

with thymine and the other without. At each time point, 1 ml of the culture was removed and 

plated on a DSM agar with or without thymine. No growth was observed both in the sub-

cultures and on DSM plates without thymine supplementation, indicating that the mutations 

were stable (Table 3.3).  
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Figure 3.14: Thymine and thymidine titration. Panel A, PY79 + thymine; panel B, 

PY79 + thymidine; panel C, SH14 + thymine; and panel D, SH14 + thymidine. This 

experiment was replicated three times. 

  

Figure 3.15: Viability of SH14 after thymine elimination. At time point 0 (OD600 0.5-

0.6) cells were washed and transferred to a fresh SOC2 media containing no thymine. ●: 

SOC2 + thymine, and ○: SOC2 only. This experiment was replicated twice. 
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3.3.8 In vitro germination 

Since different proteins (fused to CotB/CotC) will be displayed on the spore surface 

of PY79 after the double cross-over occurred, it is possible that this might affect germination. 

Thus, the thyA and thyA thyB insertional mutants were examined for their germination 

phenotypes in parallel with the isogenic spo+ parent strain, PY79. Figure 3.16 shows the % 

decrease of CFU of the PY79, thyA, and thyA thyB insertion strains after initiation of the 

germination of purified spores and killing of the germinated spores by heat treatment. This 

result shows that there was no difference between the mutant strains compared to PY79, 

which indicates that displaying antigen/proteins on a spore surface would not have any effect 

on germination. 

 

Sub-culture 

 Culture 1 

(CFU/ml) 

Culture 2 

(CFU/ml) 

DSM + 

thymine 

DSM DSM + 

thymine 

DSM 

1st 2.8 x 108 0 2.1 x 108 0 

2nd 1.8 x 108 0 3.4 x 108 0 

3rd 1.85 x 108 0 1.73 x 108 0 

4th 1.82 x 108 0 1.6 x 108 0 

5th 1.54 x 108 0 2.4 x 108 0 

1 Number of bacteria (CFU/ml) every 24h in DSM + thymine and DSM only 

Table 3.3: Reversion of SH14 upon sub-culture in DSM1 



Chapter 3: Development of a novel spore cloning system 

 
 

87 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.9 Persistence of thyA thyB mutant spores in GI-tract  

The presence of a low concentration of thymidine in the GI-tract of mice might 

permit limited proliferation of B. subtilis carrying the thyA thyB mutant alleles. An 

experiment to address this issue was designed. A single dose of 2 X 1010 spores of SH250 

(thyA+ thyB+ CmR) or SH14 (thyA::cotB-tcdA26-39 thyA::cotC-tcdA26-39) spores was given to 

mice orally. SH250 was made by inserting a chloramphenicol resistance gene into PY79 

amyE locus. The subsequent shedding of heat-resistant spores in freshly voided faeces was 

determined. The results showed that, after 240h, the levels of SH250 and spores of SH14 

had reached the threshold level of detection (Figure 3.17). This result indicates that SH14 

spores might colonise in a similar way to SH250 (wild-type) and survive in the GI-tract. To 

confirm that the spores shed from faeces are PY79 and SH14, PCR was performed on a 

random selection of 20 colonies at every time point.  

Figure 3.16: Germination of PY79, SH13 and SH14. Percentage decease of CFU was 

measured at different time points by dividing the CFU of heated spores by the initial 

volume. ■: PY79, ●: SH13, and ▲: SH14. This experiment was replicated twice. 
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3.4 Discussion 

This study has provided a new method for making recombinant spores that display 

proteins on their spore surface without using an antibiotic-resistance gene. Also, should these 

spores germinate, in environments where thymine (or thymidine) is absent, cells will die 

since they have a strict dependence on thymine (or thymidine). 

 

3.4.1 Rationale 

An absolute requirement for thymine in B. subtilis requires two thymidylate 

synthetases encoded by the unlinked thyA and thyB genes (Neuhard et al., 1978). These 

genes are linked to the folate pathway and provide pyrimidines for cell growth. Thymidylate 

synthase B is thermo-sensitive and retains only ~5-8% activity at a restrictive temperature 

of 46oC. Thus, inactivation of the thyA locus requires supplementation with thymine (or 

Figure 3.17: Survival of thyA thyB insertion mutant in a murine GI-tract. The CFU 

count of heat treated (65oC for 1h) spores from mice faeces at different time points. ■: 

CFU of PY79 plated on DSM supplemented with CAM, ●: CFU of SH14 plated on DSM 

supplemented with thymine, and ▲: CFU of SH14 plated on DSM only.  
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thymidine) for growth at 46oC. Thymidylate synthase A is not thermo-sensitive and so 

inactivation of thyB allows cells to grow at an elevated temperature. Inactivation of both 

thyA and thyB, however, produces an absolute requirement on thymine for growth at both 

37oC and 46oC. As shown by Neuhard (Neuhard et al., 1978) inactivation of thy genes 

produces resistance to the anti-folate drug trimethoprim (or aminopterin) since the need for 

dihydrofolate reductase, the target for trimethoprim, is dispensed with. However, the level 

of resistance differs, with insertion at thyA producing a lower level of resistance than that 

found in a thyA thyB mutant. This then enables a two-step ectopic cloning system to be 

considered where, in the first step, a gene is introduced at the thyA locus followed, in the 

second step, by insertion at thyB.  

 

To demonstrate proof of concept for ectopic cloning at thy loci, a number of 

heterologous genes whose gene products had previously been expressed on the spore surface 

were chosen. In each case, the expression had been achieved by chimeric fusion to a B. 

subtilis gene encoding a surface expressed spore coat protein (either CotB or CotC). VP26 

and VP28 are capsid proteins of the shrimp white spot syndrome virus and, when displayed 

on B. subtilis spores and incorporated into feed, have been shown to confer protection to 

shrimps challenged with white spot syndrome virus (Ning et al., 2011, Nguyen et al., 2014, 

Valdez et al., 2014). TcdA26-39 is a C-terminal domain of C. difficile toxin A and when 

expressed on the spore surface, it has been shown to confer protection from CDI in hamsters 

(Permpoonpattana et al., 2011a, Hong et al., 2017b). Streptavidin, when expressed on 

spores, can be conjugated to the monoclonal antibody Cetuximab enabling targeting of colon 

cancer cells (Nguyen et al., 2013). Finally, the subtilisin E and amylase E enzymes were 

displayed on the spore surface; they are important enzymes in the industry (Souza, 2010, Li 

et al., 2013).  



Chapter 3: Development of a novel spore cloning system 

 
 

90 

 

The expression of chimeric proteins was confirmed by both Western blotting and 

ELISA. As expected, expression of the chimeric proteins at both the thyA and thyB loci 

(double thy-insertion) was greater than expression at one locus. Also the expression of 

TcdA26-39, in spores of PP108 expressing the same antigen fused with CotB and CotC but 

inserted at the thrC and amyE loci respectively, was measured (Permpoonpattana et al., 

2011a). Expression levels were somewhat lower, but it should be noted that when using an 

anti-spore polyclonal antibody to measure levels of spore coat proteins expression levels 

were correspondingly reduced.  

 

The growth of the thyA and thyA thyB insertional mutants in minimal media, SMM, 

was assessed. Surprisingly, the thyA insertion strain grew normally with or without thymine 

and was indistinguishable from wild-type PY79. This illustrates that only the level of 

expression of thymidylate synthase B via thyB is enough for a thyA mutant to grow similar 

to PY79. By contrast, the thyA thyB insertion strain was thymine dependent but in the 

presence of thymine had reduced fitness. Both thymine and thymidine could be used for 

growth of strains carrying insertions in the thyA and thyB loci (Boyle and Jones, 1970). 

However, the concentration of thymine and thymidine needed for the growth of thyA thyB 

were significantly less than the 50 g/ml reported before (Neuhard et al., 1978) and most 

probably reflects differences in strain backgrounds used. Cells carrying insertions at the thyA 

and thyB loci, although able to grow in media supplemented with thymine, rapidly underwent 

a massive loss in cell viability when thymine was removed. When growing cells were 

suspended in a media devoid of thymine, a ~5-log reduction in CFU was observed in just 

5h. A similar effect has been shown previously with thymineless E. coli (Amyes and Smith, 

1974). 
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3.4.2 Experimental considerations for the use of ectopic insertion at the thy loci 

a) Growth in rich media 

In a rich media, a single thyA insertion strain was able to grow without thymine 

supplementation. Interestingly, the thyA thyB mutant failed to restore the normal levels of 

growth once supplemented with thymine in DSM and limited growth was observed, but in 

LB it ultimately failed to grow. Since the thyA thyB insertion strain could grow, albeit with 

reduced fitness, in a minimal media supplemented with thymine, a simple explanation for it 

not to grow in LB or for it to have limited growth in DSM with thymine supplementation is 

that one or more components of the rich media might inhibit growth potentially by 

interfering with the folate pathway. A prime candidate was yeast extract that is present in 

LB and DSM media at 5 mg/ml and 2 mg/ml respectively and absent in an SMM media. 

Yeast extract has been shown to inhibit thymineless E. coli strains where the active 

bactericidal ingredient has been identified as adenosine (Kinoshita et al., 1969). However 

different concentrations of adenosine had no inhibitory effect on the growth of the double 

thy mutants meaning that either the inhibitory effect is not due to adenosine or a trace of 

another element (or elements) from LB together with adenosine is required to inhibit the 

growth of double thy-insertion mutants. Yeast extract concentrations of ≥2 mg/ml inhibited 

the growth of strains carrying two thy (thyA + thyB) insertions. Tryptone is also present in 

LB. However, when the thyA thyB mutant strain was grown in SOC2 with a different 

concentration of tryptone, no inhibitory effect on growth was observed. The inhibitory 

activity of yeast extract could, therefore, explain why in the LB media the thyA thyB double 

insertion strain failed to grow in the presence of thymine. Similarly, in DSM, where yeast 

extract is present at a lower concentration, reduced growth was observed.  
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b) Gene transfer 

DNA-mediated transformation of competent cells could be used to introduce plasmid 

DNA into B. subtilis cells. For the introduction of insertions at the thyB locus, classical DNA-

mediated transformation of competent cells with the pThyB plasmid proved inefficient (with 

low levels of transformation). Instead, an electroporation method was developed that reliably 

and reproducibly enabled the introduction of pThyB plasmids at the thyB locus in thyA 

strains. An explanation for the low frequency of transformants for the double thy mutant by 

classical DNA-mediated transformation is that the media in which the thyA mutant needs to 

become competent contains yeast extract and, as shown, it can affect the double thy mutant’s 

survival. Thus, electroporation using a SOC2 media lacking yeast extract yielded higher 

frequencies of integration. Following the first genetic cross, two colony types, in equal 

proportion, were apparent on the SMM agar supplemented with thymine and trimethoprim. 

Type 1 were large opaque colonies and Type 2 colonies were translucent, smaller and grew 

slowly. All colonies showed the correct phenotype. When investigated by PCR, about one-

third of type 1 colonies were found to carry stable thyA insertions while no type 2 colonies 

carried insertions. One assumption is that these colonies that are able to grow on 

trimethoprim plates must carry some form of compensatory, yet unstable, mutation/s 

allowing growth in the presence of the antibiotic. For example, a mutation in thyA gene or 

promotor which could prevent the expression of thymidylate synthase would be an 

advantage as this allows the colonies to grow in the presence of trimethoprim and the fact 

that only expression of thymidylate synthase B (thyB) is enough for optimal growth.  

 

A second important observation was that, for the second genetic transfer, 

recombinants could only be selected on SMM minimal media supplemented with thymine, 

trimethoprim (6 g/ml) and CAA. If plated directly onto agar lacking CAA, small (<1mm), 
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slow growing colonies would result, but after reculture, these were found to have lost the 

thyB insertion as determined by colony PCR. Even in the presence of CAA, all colonies were 

small and only about 20% of colonies that grew on trimethoprim (6 g/ml) carried a stable 

thyB insertion. Work on E. coli, as well as B. subtilis, has shown that disruption of the folate 

pathway can lead to depletion of key amino acids as well as purines and pyrimidines (Amyes 

and Smith, 1974, Ferla and Patrick, 2014, Stepanek et al., 2016). Trimethoprim-mediated 

inactivation of thedihydrofolate reductase would deplete intracellular levels of 

tetrahydrofolic acid, methylenetetrahydrofolic acid as well as dihydrofolate. In turn, this 

would affect the reversible interconversion of serine and glycine with tetrahydrofolic acid, a 

vital reaction in the synthesis of purines and catalysed by an serinehydroxymethyltransferase 

(Ponce-De-Leon and Pizer, 1972, Schirch, 1982). Methyleneterahydrofolic acid is also 

utilised in the final step of the biosynthetic pathways of cysteine and methionine (Ferla and 

Patrick, 2014) and disruption of the pathway by the thyA thyB alleles could introduce a 

requirement for methionine. 

 

In thymineless E. coli, supplementing CAA and adenine can restore full growth in 

minimal media in the presence of thymine (Amyes and Smith, 1974, Kwon et al., 2010). 

Therefore, the ability to grow of the thyA thyB mutant in SMM supplemented with CAA and 

purine (adenine) was assessed. The optimal growth was observed in the SMM containing 

CAA and thymine, and SMM containing CAA, adenine, and thymine. The growth was 

markedly reduced in media containing no CAA or carrying only adenine and/or thymine. 

There was no difference between the growth of thyA thyB in SMM containing CAA and 

thymine with or without adenine. This suggests that supplementing CAA restores the 

depleted amino acids. Also, supplementing adenine does not have any effect on the growth 

of the double thy-insertion mutant. In the absence of trimethoprim, growth of SH14 remained 
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weak compared to the wild-type strain PY79 but was i) superior to that in the presence of 

the antibiotic, ii) growth was restored to normal fitness only in the presence of CAA. 

Mutating thy genes, therefore, disrupt the folate pathway significantly reducing strain fitness 

and this could not be restored by supplementation with purines or pyrimidines but only with 

CAA. Since adenine supplementation did not affect the growth of double thy mutant strains, 

then it is possible that supplementing the depleted amino acid by disrupting the folate 

pathway, as suggested in some publications, would restore the normal level of growth 

(Amyes and Smith, 1974, Stepanek et al., 2016). In the presence of glycine, methionine, and 

serine, the normal level of growth wasn’t reached suggesting that the production or 

concentration of other molecules or amino acids might have been affected. Therefore, for 

construction of strains with double, thyA thyB, insertion, in the second step, media such as 

CAA providing all amino acids are essential. However, once constructed, the use of 

trimethoprim is no longer required and strains can be cultivated on any media so long as 

three criteria are met: first, that the media contains thymine or thymidine; second, that yeast 

extract is absent, and third, that amino acids are provided in the growth media. 

 

c) Choice of one coat protein anchor 

For expression of heterologous proteins on the spore surface, the coat proteins CotB  

and CotC can be used for both mono or divalent expression. Fusion of a chimeric gene to 

two different spore coat proteins, results in higher display of the chimeric proteins on the 

spore surface. TcdA26-39 levels were higher in SH14 spores carrying thyA::cotB-tcdA26-39 and 

thyB::cotC-tcdA26-39 insertions than in SH13 spores carrying only a thyA::cotB-tcdA26-39 

insertion. Interestingly, using a fusion of VP28 with CotB and insertion of this chimera at 

the thyA locus alone (strain AC01) or at both the thyA and thyB loci (strain AC02) lead to 

higher levels of expression in the latter. This finding requires some consideration since it 
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must be assumed that each spore would carry a defined number of CotB monomers that 

could assemble onto the spore surface and simply increasing the number should not lead to 

higher levels of incorporation in the coat. These strains would, however, carry an intact cotB 

gene (residing at its normal chromosomal locus) so in cells carrying a thyA::cotB-VP28 

insertion (i.e., strain AC01), 50% of displayed CotB proteins should present a wild-type 

CotB and 50% CotB-VP28. In a double thyA thyB insertion strain (AC02) we would predict 

~ 66% of displayed CotB proteins would present VP28 and ~33% wild-type CotB. This 

stoichiometry ratio of CotB-VP28 and CotB would agree with the ELISA detection of VP28. 

These results raise the possibility that higher surface expression of the proteins fused to CotB 

or CotC could be achieved by knocking out the wild-type cotB or cotC genes.    

 

3.4.3 Stability of the thyA thyB insertion 

An insertion generated by a double-crossover recombinational event should be 

inherently stable, yet there exists the possibility of acquisition of a compensatory suppressor 

or bypass mutation. To address this, a straightforward experiment to determine whether, 

upon repeated culture in the absence of any selective pressure, the thymine dependence could 

be lost was conducted. This experiment yielded no loss of the thymine dependency showing 

the insertions were stable and suggesting that the acquisition of compensatory mutations if 

they were to occur, must be an extremely rare event. 

 

3.4.4 In vivo fate of thyA thyB insertion mutant spores in the GI-tract 

It has been demonstrated that for E. coli to colonise the murine GI-tract, synthesis of 

purines and pyrimidines is necessary (Vogel-Scheel et al., 2010). This implies that the low 

levels of purines and pyrimidines that might result from digested food or spurious lysis of 

resident gut microbiota would not be sufficient to permit growth of a B. subtilis thyA thyB 
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mutant. In humans, the intestinal concentration of thymidine is estimated as 0.075 M and 

in pigs ~1.0 M (Steidler et al., 2003).  

 

Spores of SH14 and SH250 (thyA+ thyB+ CmR) were detected in the faeces of mice 

that were administered with spores orally. The temporal kinetics of shedding was 

indistinguishable from that of a spo+ thy+ SH250. After 10 days, the number of SH14 spores 

being shed in the faeces was (at levels <103/g of faeces) at the level of detection. Although 

it is not possible to determine whether SH14 spores could proliferate in the GI-tract, it was 

possible to show that in the absence of thymine spores in the faeces could not survive post-

germination as no CFU were detected on DSM only. 

 

3.4.5 Comparison of thy-insertion cloning system with other existing techniques that do 

not require an antibiotic-resistance gene 

 This is not the first report that does not use an antibiotic-resistance gene in the 

cloning procedures. Iwanicki et al. (2014) designed suicide plasmids without antibiotics 

resistance genes, and with or without selection markers for ectopic integration which they 

used to display heterologous proteins on a spore surface (Iwanicki et al., 2014). First, they 

used plasmids that would integrate into genes such as thrC, trpC, and lysA, disrupting these 

genes and thus the recombinant strains would be selected on minimal media with and/or 

without threonine, tryptophan, and lysine respectively. They also introduced a plasmid that 

harbors trpC in addition to fusing a heterologous gene that would be integrated into a non-

essential gene, in their experiment amyE locus. They introduced this plasmid into a B. 

subtilis 168 laboratory strain that was an auxotroph for tryptophan. Therefore, the 

prototrophic recombinant strains can be selected by their ability to grow on minimal media 

without tryptophan supplementation. In another study, a stable gene insertion into the E. coli 
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chromosome was developed by utilising an insertion cassette that contains left and right 

homologous arms of the chromosomal target locus flaking by dif sites, and an 

chloramphenicol-resistance gene (Bloor and Cranenburgh, 2006). The dif site is present in 

the replication terminus region of the E. coli chromosome in which the Xer site-specific 

recombinase, responsible for resolving a chromosome or plasmid dimer into the monomer, 

recognises it. This recombination requires XerC and XerD. Once the insertion cassette is 

introduced into the E. coli cell, the right and left homology arm of the inserting cassette 

target the homologous locus by homologous recombination and the transformants can be 

recognised by their chloramphenicol-resistance phenotype. Following recombination, the 

recombinases resolve the two repeats of dif sites to one site which results in excising the 

antibiotic-resistance gene.  

 

Similar to the thy-insertion cloning system, the latter techniques also do not require  

the antibiotic-resistance gene as a selection marker. However, the exciting part of the thy-

insertion cloning system is that it has a lower chance of survival in the environment should 

the spores germinate as a result of thymine starvation. The most comparable method to the 

thy-insertion cloning system is the method developed by Iwanicki et al, (2014) in which the 

recombinant strains become amino acid auxotroph. However, these strains could survive in 

the environment as many studies have reported that the soil is enriched with amino acids 

(Sørensen, 1972, Jones et al., 2005, Cao et al., 2016). The thy-insertion cloning system could 

be more favorable for two reasons. First, the recombinant strains, as well as the thymine 

phenotype, also develop trimethoprim resistance and that makes the selection easier. The 

second factor is the non-existence of thymine in nature. Does that mean that these strains 

have absolutely no chance once released into the environment? The answer is no, since there 

is a possibility that these recombinant spores could be ingested by animals. For example, if 
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these spores accidentally fall on animal feeds, they can be ingested by animals whereupon 

they could germinate and replicate in their gut as thymine is present both from the 

degradation of DNA in the feed such as vegetables or meat, or from the degradation of DNA 

in lysed microbiota. Thirdly, as well as thymine, these strains also become amino acids 

auxotroph resulting in further reduction of the ability to survive.  

 

3.5 Conclusion  

In conclusion a straightforward method to contain genetically modified bacterial 

spores was described. This approach follows those described for Lactobacillus acidophilus 

(Fu and Xu, 2000) and Lactococcus lactis (Steidler et al., 2003) that rely on the indigenous 

suicide resulting from a ‘thymineless death’. First described in 1954 (Cohen and Barner, 

1954), thymine dependence differs from other auxotrophies in that the absence of thymine 

is bactericidal and so bacteria carrying defects in the thymidylate synthase genes cannot 

accumulate in the environment. Bacillus species carry two thymidylate synthase genes (thyA 

and thyB) requiring inactivation of both loci to achieve complete dependence on thymine. A 

two-step cloning procedure requiring insertional inactivation of first thyA and then thyB loci 

that renders recipient cells thymine dependent was demonstrated. This approach does not 

require the introduction of antibiotic-resistance gene markers for selection but rather the 

development of increasing levels of resistance to trimethoprim that arise from successive 

disruption of the folate pathway. Coupled with the temperature sensitive phenotype of the 

thyA thyB recombinants, this method enables both selection and screening of insertions 

although technically there are a number of constraints that must be considered. It was shown 

that the absence of thymine is bactericidal and no evidence for reversion or suppression 

despite the repeated passage of these strains was observed. Of course, the purpose of the thy 

cloning system is to construct Bacillus strains able to express proteins for applied purposes, 
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for example, for expression of heterologous antigens or enzymes. Examples that are used 

here show that chimeric proteins comprised of a heterologous protein fused to a spore coat 

protein can be displayed on the spore surface. This has included the delivery of two enzymes 

(subtilisin E and alpha-amylase), putative vaccine protective antigens as well as streptavidin, 

although the correct folding of these antigens and enzymes has not been investigated yet. It 

is clear though that this system could equally be used for expression of proteins in, or 

secretion from, the vegetative cells. 
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CHAPTER 4 

APPLICATION OF CLONES CONSTRUCTED BY 

THE THY-INSERTION CLONING SYSTEM 
 

4.1 Introduction 

Microbial display technology has enabled scientists to express any potential protein 

on the surface of a microorganism. This technique can be performed in two ways: the first 

is based on fusing proteins to anchor proteins such as Cot proteins (e.g., CotB) on the spore 

surface of B. subtilis. Microbial display technology is becoming a fundamental tool 

prevailing over the issues in bioprocesses during harsh industrial processes, environmental 

protection, and vaccine development (Kim and Schumann, 2009). The typical coat proteins 

from B. subtilis used to display target antigens are CotB, CotC, CotG, and CotZ (Chen et al., 

2017). In the second method, proteins can be displayed on the spore surface without the need 

to fuse them to an anchor protein. The hydrophobic surface layer and negative charge of 

spores enable the absorption of a protein antigen to its surface. Mucosally immunised mice 

using appropriate adsorbed spores showed protection and survived when challenged with an 

anthrax toxin (Huang et al., 2010). However, the adsorption of native proteins to the spore 

surface can be costly as it requires expression and purification of proteins such as enzymes 

in their native forms. Immobilisation of proteins on the spore’s surface can lead them to be 

taken orally and thus they can be used as a treatment for diseases (Chen et al., 2017). The 

ability to express proteins on, especially, B. subtilis spores offers a number of industrial 
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applications. First, and foremost, is their use as mucosal vaccines where antigens can be 

displayed on the spore surface by fusion to a spore coat protein anchor (Pan et al., 2012). 

Mucosal vaccination is considered to be a potentially effective treatment or prevention 

against infections since a large surface of the body is covered by mucosal tissues and many 

infections are initiated at mucosal sites. Immunisation of recombinant spores by a mucosal 

route (oral, sub-lingual or nasal) has shown promising results and, in some cases, levels of 

protection that could be efficacious in humans or animals (Duc et al., 2003, Lee et al., 2003, 

Permpoonpattana et al., 2011a). In the case of the latter, the ability to incorporate a vaccine 

in the feed is particularly attractive and, for some animals, arguably, the only way to 

vaccinate. For example, vaccinating farmed shrimp against the viral pathogen white spot 

syndrome virus, by recombinant spores expressing the white spot syndrome virus VP28 and 

VP26 capsid antigens, has been shown to confer protection in them (Fu and Xu, 2000, Ning 

et al., 2011, Nguyen et al., 2014, Valdez et al., 2014).  

 

A number of Bacillus species are considered safe for human consumption and are 

designated as QPS (Qualified Presumption of Safety as defined by EFSA, European Food 

Safety Authority) (EFSA 2008) and in the USA some strains carry GRAS (generally 

regarded as safe as defined by the food and drug administration) status. QPS and GRAS 

status have supported the use of a number of Bacillus strains, including those of B. subtilis, 

as probiotics in both human and animal feeds (Hong et al., 2005). The concept of 

recombinant probiotics (Amalaradjou and Bhunia, 2013) is, conceptually, a logical next step 

forward in exploiting the beneficial properties of Bacillus (Sorokulova et al., 2008). In 

addition to vaccines, spores have been shown to facilitate expression of enzymes on the 

spore surface, for example, the animal feed enzyme phytase (Potot et al., 2010). 
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The ability to use probiotic bacteria that deliver enzymes negates the need to purify  

enzymes and could offer significant advantages to industry. Finally, streptavidin, a protein 

that has a high affinity to biotin through strong non-covalent interaction, has been expressed 

on B. subtilis spores enabling biotinylated monoclonal antibodies to be conjugated to the 

spore surface to enable the targeting of spores loaded with anti-cancer drugs to cancer cells 

(Nguyen et al., 2013). 

 

Using a thy-insertion cloning system (Chapter 3) several protein antigens and 

enzymes expressed on a recombinant spore surface were constructed. It is crucial that the 

proteins expressed on the surface of these recombinant spores are in native form and 

functional. Therefore, to confirm that the displayed proteins on recombinant spores are 

active, their functionality needs to be investigated. 

 

4.2 Aim 

The aim was to produce and test different recombinant strains that express and 

display different proteins on their spores for industrial and treatment purposes. Antigen 

proteins will be expressed on the surface of PY79 spores for the purpose of the mucosal 

vaccine, and the immunogenicity of the recombinant spores will be tested. Also, streptavidin 

will be expressed on the PY79 spores where biotinylated antibodies will be conjugated to 

streptavidin, and this clone will be tested for a strategy to treat CDI.  Finally, different 

enzymes will be expressed on the surface of PY79 spores, and their functionality will be 

tested.   
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4.3 Results  

4.3.1 Utility of spore display 

 Using a thy-insertion cloning system, different clones encoding different types of 

proteins were made. Three approaches were used to demonstrate that spores carrying 

insertions at the thyA and thyB loci were suitable for applied purposes: 1) as vaccine delivery 

vehicles, 2) conjugation of proteins/antibodies to the spore surface and 3) to display active 

enzymes. The functionality and the application of these proteins on the spore surface were 

investigated.  

 

4.3.2 Vaccine delivery vehicle  

Mutating of thy genes in B. subtilis, PY79, by insertion of chimeric genes allowed 

the construction of different strains that express chimeric proteins as antigens on their spore 

surface. Two clones for the purpose of mucosal vaccine have been constructed. The clone 

that expresses VP26 and VP28 is currently being tested on shrimps in Vietnam. The second 

clone displays TcdA26-39. The C-terminus of toxin A of C. difficile is composed of 38 repeat 

sequences that encode the receptor-binding domain of TcdA. TcdA26-39 is 14 repeat 

sequences of 38 repeat of C-terminus of toxin A, also known as 14CDTA, that has been 

shown to be immunogenic (Ward et al., 1999a). To check whether an expressed antigen on 

a spore can stimulate an immune response, a clone (SH14 (thyA::cotB-tcdA26-39; thyB::cotC-

tcdA26-39)) that displays TcdA26-39 fused to both CotC and CotB on its spore surface was 

tested in mice. SH14 is equivalent to strain PP108 that has previously been shown to confer 

protection to CDI in murine and hamster models of infection (Permpoonpattana et al., 2011a, 

Hong et al., 2017b). PP108 (thrC::cotB-TcdA26-39 amyE::cotC-TcdA26-39) is constructed by 

the insertion of cotB-TcdA26-39 and cotC-TcdA26-39 into thrC and amyE genes of PY79 

respectively, and using two antibiotic resistance genes (erythromycin and chloramphenicol 

resistance genes) as selection markers (Permpoonpattana et al., 2011a). Mice were 
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immunised with spores of SH14, PP108, and PY79 using oral administration. Every batch 

of spores prepared was confirmed for the presence of TcdA26-39 on the recombinant spore 

surface by Western blotting. After a total of four doses, the titer of TcdA26-39-specific IgG 

(Figure 4.1A) and IgA (Figure 4.1B) in the serum and faeces respectively were measured 

using Indirect ELISA (Figure 4.1). Compared to control groups (naive and mice dosed with 

naked PY79 spores) that exhibited no responses, both PP108 and SH14 spores generated 

high titers of IgG and IgA. This is an indication that SH14 does stimulate an immune 

response and could be used for preventing the colonisation of C. difficile in the gut. 

 

4.3.3 Conjugation of antibody to the spore surface 

a) Conjugation of anti-TcdA26-39 antibody to SH16 

A Streptavidin gene was cloned in the PY79 strain and expressed on the spore surface 

by the thy-insertion cloning system. SH16 (thyA::cotB-SA; thyB:: cotB-SA) spores were 

shown, by Western blotting, to express CotB-streptavidin protein on their surface (Chapter 

3 Figure 3.4). To test the conjugation of the antibody to streptavidin on the spore surface of 

SH16, first, a rabbit polyclonal TcdA26-39-specific antibody was biotinylated. Biotinylated 

antibodies (anti-TcdA26-39) were then incubated with PY79 and SH16 spores for an hour at 

RT to allow them to bind to streptavidin on the spore surface. Western blotting to confirm 

that the biotinylated polyclonal antibodies had conjugated to streptavidin on the spore 

surface was performed. PY79 spores were used as a control. The results indicate that 

biotinylated anti-TcdA26-39 were conjugated to both streptavidin and PY79 spores (Figure 

4.2). The adsorption of biotinylated antibodies to PY79 spores could be due to a combination 

of hydrophobic and electrostatic interactions between spores and antibodies (Huang et al., 

2010). However, based on the band intensity, more antibodies were bound to SH16 in 

comparison to PY79.  
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Figure 4.1: Immunogenicity of SH14 spores expressing the C. difficile TcdA26-39 antigen. Spores (5 X 1010) of SH14 (thyA::cotB-

tcdA26-39  thyB::cotC-tcdA26-39), PP108 (amyE::cotC-tcdA26-39   thrC::cotB-tcdA26-39 ) and PY79 (spo+) were administered to mice (n=4) by 

oral gavage on days 1, 14, 35 and 57. Serum IgG and faecal IgA specific to TcdA26-39) was determined by ELISA and endpoint titers are 

shown. **, p < 0.005; ***, p < 0.0002. Panel A shows the end-point titer of IgG, and panel B shows the end-point titer of IgA.  

B A 
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Further verification of an anti-TcdA26-39 antibody being displayed on a spore surface 

was done by both immunofluorescence and whole spore ELISA (Figure 4.3 and Figure 4.4). 

All these results indicate that biotinylated anti-TcdA26-39 can bind to streptavidin and be 

displayed on a spore surface. Using whole spore ELISA, the expression of CotB- streptavidin 

in SH16 (double thy mutant) was shown to be higher than a single thy-insertion mutant SH15 

(thyA::cotB-SA) (Figure 4.3). This indicates that having two insertions of cotB-streptavidin 

results in a higher expression and display of the CotB-streptavidin protein on a spore surface. 

Moreover, the ELISA result shows that the binding of biotinylated anti-TcdA26-39 to PY79 

was ~3-fold lower compared to SH15 and ~5-fold lower compared to SH16 (Figure 4.3). 

This again indicates that a low level of antibody does bind to PY79 spores; however, the 

presence of streptavidin on a spore surface and incubating these spores with biotinylated 

antibodies results in much higher conjugation. Using immunofluorescence microscopy, 

further verification of the display of biotinylated antibodies on the spore surface of SH16 

was done. The immunofluorescence image confirms the presence of biotinylated antibodies 

on the spores’ surface, and also that only a low level of antibody binds to the PY79 spore 

(Figure 4.4B). 
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Figure 4.2: Examining the conjugation of anti-TcdA26-39 antibody to PY79 and 

SH16 by Western blotting. Western blotting of the spore coat proteins extracted was 

preformed from preparations of pure spores and spores conjugated with an anti-TcdA26-

39 antibody, using an anti-rabbit IgG antibody (1/3,000 dilution). Bands obtained are 

indicated by a red arrow. Lanes 1 and 2 are naked PY79 and SH16 spore extracts 

respectively. Lanes 3 and 5 are two different batches of PY79 spores incubated with 

biotinylated anti-TcdA26-39. Lanes 4 and 6 are two different batches of spores of SH16 

incubated with biotinylated anti-TcdA26-39, and lanes 7 and 8 are non-biotinylated and 

biotinylated anti-TcdA26-39 antibodies respectively used as controls. The protein loaded 

per well corresponded to an extraction from 2 X 108 spores. 

 

Figure 4.3: Spore surface conjugation determined by “Whole Spore ELISA”. 

Microtiter plates were coated with spores (3 X 108/well) of PY79, SH15 (thyA::cotB-

SA), and SH16 (thyA::cotB-SA; thyB::cotB-SA) conjugated with biotinylated TcdA26-39 

and then probed with anti-rabbit polyclonal antibody (1:6,000 dilution).  Naive serum 

was used for comparison, and basal levels were subtracted. Primary polyclonal anti-spore 

antibody from a rabbit was used (1:1,000 dilution), to detect the spores, followed by 

secondary polyclonal anti-rabbit antibody (1:6,000 dilution). This experiment was 

replicated three times. 
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A B C 

Figure 4.4: Surface display of anti-TcdA26-39 using immunofluorescence imaging of suspensions of SH16 and PY79. The 

visualisation of conjugation of anti-TcdA26-39 antibodies to SH16 spores using immunofluorescence (panel A). As a control (panel B) 

PY79 lacking streptavidin failed to conjugate (although a low level of antibody can still bind to it). Panel C is the phase contrast image 

confirming the presence of PY79 spores.  
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b) Subtraction of toxin A from C. difficile toxin sample 

 Both toxin A and toxin B from C. difficile are responsible for CDI. These toxins can 

damage the intestinal epithelium and result in inflammation and diarrhea in an infected 

person. Subtraction and inactivation of these toxins will prevent CDI (Kuehne et al., 2010). 

Thus, whether SH16 spores displaying TcdA26-39 IgG could subtract C. difficile toxins from 

a crude cell-free lysate was investigated. To do that, the crude toxin of C. difficile R176 (a 

hypervirulent strain) was mixed with SH16 spores conjugated with anti-TcdA26-39 incubated, 

and then spores were spun down, and the supernatant was sterilised, after which it was added 

to HT29 cells. Cytotoxicity was confirmed by examining the HT29 cells after a 24h period 

under a light microscope. A round morphology indicated the toxicity effect of toxin A on 

cells (Figure 4.5). As shown in Table 4.1, incubation of conjugated spores with toxin-

containing supernatant for just 5 min reduced toxicity by 90%. PY79 spores also had some 

ability to bind TcdA26-39 antibodies and were able to provide a modest reduction (10-20%)  

in toxin activity. 

 

 

 

 

 

 

 

 

 

 

 

Samples 

 

Cytotoxicity (%)  

Media only 0 

Crude toxin 100 

Crude toxin incubated with PY79 80-90 

Crude toxin incubated with SH16 conjugates 10 

1 Absorption of toxin to spores was measured on HT29 cells. This experiment was 

replicated twice. 

  

 

 

Table 4.1: Determination of reduction in toxicity 1 
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4.3.4 Display of active enzymes 

Enzymes are commonly included in animal feeds where they improve digestion and  

nutrition. Proteases and amylases are pertinent examples used here to show that it is possible  

to display an enzyme that retains activity on the spore surface. Two clones, by inserting 

chimeric genes into the thy genes, were made that express enzymes on their recombinant 

spore surface. SH18 (thyA::cotB-amyE; thyB::MSC) expresses amylase enzyme from B. 

amyloliquefaciens, and SH20 (thyA::cotB-aprE; thyB::MSC) expresses subtilisin E enzyme 

from B. subtilis on the spore surface. Both clones only have one copy of the enzyme gene 

inserted into thyA and have the MCS inserted into thyB. Insertion of MCS (~60 bp) has 

disrupted the reading frame and, as a result, stopped the expression of thymidylate synthase, 

making the strain thymine dependant. It is important that the enzymes fused to CotB have 

correctly folded on the spore surface to be functional. Therefore, the activity of expressed 

enzymes on recombinant spores of both clones was tested. 

 

C D A B 

Figure 4.5: HT29 morphology treated with crude toxin. A round morphology 

indicated the susceptibility of the cells to toxin. Panel A shows the untreated HT29 

cells; panel B, HT29 treated with crude toxin; panel C, HT29 cells treated with crude 

toxin incubated with PY79 spores; panel D, HT29 cells treated with crude toxin after 

5 min incubated with SH16 conjugates. Images were taken after 24h incubation.  This 

experiment was replicated twice. 
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 a) Subtilisin E 

Subtilisin is a non-specific serine protease that breaks down proteins by cleaving the 

amide (peptide) bond through a serine residue and the active site. It has many applications 

such as use in detergents and food processing (Valls et al., 2011, Li et al., 2013). Subtilisin 

can also break down casein (Rival et al., 2001). To test the functionality of protease enzyme 

(subtilisin E) displayed on the spores’ surface, a simple experiment that proves the 

proteolytic activity of the enzymes by digesting hide powder remazol blue was performed. 

Hide powder azure (a blue fibrous substrate) is coupled with a dye remazol brilliant 

blue. Degrading hide powder azure by proteases will result in releasing dye-bound 

peptides into a solution which can be measured (Yadav et al., 2010). Naked PY79 

spores were used as a control. Using this assay, the proteolytic activity of SH20 spores 

displaying subtilisin E on their spore surface by digesting the hide powder remazol blue was 

observed (dark blue colour OD600 ~0.5), whereas PY79 had no such effect (OD600 ~0.02) 

(Figure 4.6). This indicated that protease enzyme (subtilisin E) displayed on the spore 

surface is functional.  

 

 

 

 

 

 

 

 

 

 

SH20 

 

PY79 Negative control  

Figure 4.6: Determination of protease activity of PY79 and SH20. Digestion of hide 

powder remazol blue of PY79 and SH20 spores. Digestion of remazol results in a darker 

blue colour. SH20 spores showed that they exhibit the protease activity and they resulted 

in higher blue colour intensity than the negative control. 
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To verify that the subtilisin enzymes displayed on spores can degrade casein, ~5 X 

108 spores were spotted on a casein agar supplemented with an antibiotic cocktail 

(trimethoprim, chloramphenicol, erythromycin) and incubated. PY79 and protease 

from Streptomyces griseus were both used as negative and positive controls respectively. As 

shown in Figure 4.7, spores from SH20 can digest casein whereas the PY79 spores (wild-

type) cannot. This, again, indicated that the subtilisin E enzymes displayed on the spore 

surface are functional and exhibit the casein digestion activity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To determine the unit of activity of casein digestion of SH20 spores, the method 

described by Folin and Ciocalteu (Folin and Ciocalteu, 1927) was used. Proteases break 

Protease from Streptomyces griseus 

 

SH20 PY79 

Figure 4.7: Degradation of casein by SH20 spores. Purified spores of PY79 and SH20 

were spotted (20 l) on the casein agar. The zones of inhibition were determined by 

staining the agar with bromocresol green and incubating. PY79 spores were used as 

negative control that exhibited no casein digestion activity.  Protease from Streptomyces 

griseus was used as a positive control. Both SH20 spores and protease from Streptomyces 

griseus showed the zone degradation. PY79 didn’t show any activity for casein 

degradation.  
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down casein into tyrosine, other amino acids, and peptide fragments. The free tyrosine can 

react with Folin and Ciocalteus Phenol, or Folin’s reagent which produces a blue colour 

chromophore. This can be measured using a spectrophotometer and the absorbance value 

generated by the activity of the protease can be quantified by comparing it to OD660 of a 

tyrosine standard curve. A tyrosine standard curve was generated by defining the known 

quantities of tyrosine with the Folin’s reagent. Figure 4.8 shows a standard curve for 

different concentrations of tyrosine. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using the line equation generated from the tyrosine standard curve, the amount of  

y = 0.631x + 0.0011
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Figure 4.8: Tyrosine standard curve. A tyrosine standard curve is generated by mixing 

a defined quantity of tyrosine (0.055, 0.111, 0.221, 0.442 and 0.553 Moles) with Folin’s 

reagent. The absorbance (OD660) generated by each sample was measured using a 

spectrophotometer. Results are presented on a line graph and the line equation is 

presented on the graph in red. 
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tyrosine released by digesting casein using SH20 spores was determined and the unit of 

activity (amount of tyrosine (Moles) released from casein per min) was calculated (Table 

4.2). The results show that 1010 spores of SH20 had ~ 0.13 units of activity per ml for casein 

digestion whereas PY79 spores showed 0.01 units of activity per ml. This confirms that 

SH20 recombinant spores exhibit casein digestion activity. 

 

 

 

 

 

 

b) Amylase E  

Alpha-amylase can break down starch or glycogen into simple sugars, by breaking 

the internal alpha-1,4 glycoside bonds resulting in the production of oligosaccharides and 

maltose. A clone (SH18) that expresses amylase enzymes on its recombinant spores was 

made by the thy-insertion cloning system. To confirm whether the amylase expressed on the 

spore surface is active, different CFU of purified SH18 spores were spotted on starch agar 

supplemented with an antibiotic cocktail (trimethoprim, chloramphenicol, erythromycin). 

Figure 4.9 shows the zone of starch degradation. This result indicates that the amylase E 

displayed on the spore surface of SH18 is functional. PY79 spores didn’t show any zone of 

degradation meaning that these spores don’t naturally have any amylolytic activity.  

Strain 

 

No. of spores OD660 Unit of activity/ ml 

SH20 1010 0.146 0.127 

PY79 1010 0.013 0.01 

1 Using the OD660 generated by PY79 and SH20, the amount of the Moles of tyrosine released by 

casein digestion was calculated from the tyrosine standard curve and then the unit of activity was 

determined. 

 

1 Using the OD660 generated by PY79 and SH20, the amount of the Moles of tyrosine released by 

casein digestion was calculated from the tyrosine standard curve and then the unit of activity was 

determined. 

Table 4.2: Determination of the unit of activity for casein digestion1  
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To determine the unit of activity of SH18 spores in liquid, the method described by  

Bernfiel (Bernfeld 1955) was used. The maltose released by digesting starch using alpha-

amylase can react with the colour reagent (described in method, section 2.21) and, as a result, 

the OD540 can be measured. Therefore, to calculate the amount of maltose released using 

SH18 spores, a standard curve using different concentrations of maltose reacting with a 

colour reagent was generated (Figure 4.10). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The amount of maltose released by digesting starch using spores was calculated by 

obtaining the OD540 of the supernatant and comparing it to the maltose standard curve. 

Finally, the unit of activity was calculated using the equation described in the method 

SH18 (1010 spores) 

SH18 (109 spores) 

PY79 (1010 spores) 

Figure 4.9: Degradation of starch by SH18 spores. Purified spores of PY79 and 

SH18 were spotted (20 l) on starch agar and incubated. The agar was stained with 

Lugol solution to reveal zones of degradation. PY79 spores were used as a control. 

SH18 spores showed the zone degradation while PY79 didn’t show any activity of 

starch degradation (no zone of clearance).  
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(Section 2). This result indicates that 1010 spores of SH20 carried ~3 units of amylase activity 

with the control PY79 exhibiting almost no activity (Table 4.3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Samples CFU OD540 Activity 

(unit/ml) 

SH18 1010 spores 0.981 2.99 

PY79 1010 spores 0.014 0.18 

Figure 4.10: Maltose standard curve. A maltose standard curve is generated by mixing 

a defined quantity of maltose (0.3, 1.2, 2.4, 3.6, 4.8, 6 and 12 mMoles) with a colour 

reagent (see Method, Chapter 2). The absorbance (OD540) generated by each sample was 

measured using a spectrophotometer and presented as a line graph. The line equation is 

marked on the graph in red. 

y = 0.3437x - 0.0464
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1 Using the OD540 generated by PY79 and SH20, the amount of maltose released by starch 

digestion was calculated from the maltose standard curve.  

 

1 Using the OD540 generated by PY79 and SH20 the amount of maltose released by starch 

digestion was calculated from maltose standard curve.  

Table 4.3: Determination of the unit of activity for starch digestion1 
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4.4 Discussion 

The use of B. subtilis spores as a vehicle for displaying proteins offers several 

applications such as for recombinant spore vaccines. Expressing proteins on the spore 

surface in their native form is very important and the recombinant spores are only applicable 

if the proteins displayed on them are in their native forms. Here the functionality and some 

example applications of proteins expressed on B. subtilis spores using a thy-insertion cloning 

system were investigated.  

 

4.4.1 Spore display and its use 

a) Antigen (recombinant spore vaccine) 

Mucosal vaccination showed promising results for inducing immunity and protection 

against some bacterial pathogens, and currently, there is a great interest in developing these 

vaccines (Azegami et al., 2014). Being non-invasive, the ease of administration and the fact 

that large surface areas of the body are covered by mucosal tissues are some of the 

advantages that mucosal vaccines have. Spores of SH14 expressing the TcdA26-39 antigen of 

C. difficile fused to two spore coat protein anchors, CotB and CotC. Immunised mice with 

SH14 and PP108 spores delivered through oral administration, compared to control groups 

(naive and mice dosed with naked PY79 spores) that exhibited no responses, generated a 

high titer of IgG and IgA and, based on previous work, it would be predicted that these levels 

of antibodies would be protective (Hong et al., 2017b). Knowing that both clones (SH14, 

PP108) can produce an immune response, SH14 can be a better vaccine of mucosal, as it 

does not have any antibiotic-resistant gene genetically inserted into its genome.  
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b) Enzymes 

Enzymes are commonly included in animal feeds where they improve digestion and  

nutrition (Potot et al., 2010), for instance, phytase, which breaks down the indigestible 

phytate, a substrate containing phosphorus, which is essential for cell or tissue repair, 

maintenance, and growth (Boyce et al., 2004). Previous work has shown that fusing phytase 

to B. subtilis spore coat proteins will display the chimeric protein on the spore surface and 

is functional. These spores can then be mixed with animal feed which will improve their 

digestion. The low cost and easy preparation of the spores that display enzymes are 

advantages in comparison to the pure enzyme. Two genes encoding for subtilisin E and 

amylase were used to show that it is possible to display an enzyme that retains activity on 

the spore surface. SH18 spores expressing amylase were found to be able to express active 

amylase on their surface and that 1010 spores carried ~3 units of amylase activity. Using a 

casein agar, it was shown that SH20 spores expressing the alkaline protease, subtilisin E, 

carried enzymatic activity. In liquid suspensions, it was found that 1010 spores of SH20 had 

~0.13 units of protease activity. To be able to use these spores for their enzymatic activity 

in humans or animals feed, first they need to be dried, and the unit of the activity then needs 

to be calculated (unit of activity/g). Knowing the number of units of activity required for 

human and/or animals, the right number of dried spores can be calculated.    

 

Displaying enzymes on spore surfaces could be further improved by inserting genes 

which encode for more stable enzymes, e.g., thermostable alkaline phytase from Bacillus sp. 

MD2 (Tran et al., 2011). The ability to express enzymes on the spore surface can also have 

therapeutic purposes. Malabsorption syndrome due to pancreatic problems can be treated by 

taking pancreatic enzymes that are a commercial mixture of protease, lipase, and amylase 
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(Keller and Layer, 2005). A combination of spores displaying the latter enzymes could be a 

better potential treatment option for malabsorption syndrome.  

 

SH20 spores which express the alkaline protease were shown to have casein 

degradation activity, though the unit of activity was not high. Expressing a better enzyme, 

on the spore surface, with a high unit of activity for casein digestion such as the enzyme 

subtilisin Carlsberg from B. licheniformis, would be more favourable. These spores then 

could then be used for digesting casein in milk and as a potential probiotic for individuals 

who are unable to digest casein in milk.  

 

c) Streptavidin 

Delivery of drugs to cells using B. subtilis spores is a more efficient system compared 

to the delivery of drugs on its own. The use of B. subtilis spores that express streptavidin for 

therapeutic drug delivery has been documented (Nguyen et al., 2013). A biotinylating 

cetuximab antibody bound to streptavidin on killed B. subtilis spores could recognise the 

epidermal growth factor receptor on HT29 colon cancer cells. Paclitaxel, which binds to 

Cetuximab, could thereby be delivered to cancer cells and kill them by blocking the 

epidermal growth factor receptor. In this work, the ability of biotinylated polyclonal TcdA26-

39 antibodies to streptavidin on the surface of SH16 was tested. The conjugation and display 

of the biotinylated polyclonal TcdA26-39 antibodies by various techniques to SH16 spores 

was shown. Interestingly, PY79 spores also showed some level of conjugation. However, 

these conjugations could be the result of the adsorption of antibodies to the hydrophobic and 

negatively charged surface of spores.  Using the whole spore ELISA, the conjugation of the 

polyclonal antibodies to PY79 was about ~5-fold lower compared to SH16. This agrees with 

the previous report which has shown that protein can be adsorbed to a spore’s surface (Huang 
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et al., 2010). Western blot and ELISA results showed that having two copies of streptavidin, 

inserted in the genome, will lead to higher expression on the surface of spores. This is an 

advantage as higher expression of streptavidin results in more antibodies binding to spores, 

which reduces the overall number of spores that need to be administered.  

 

Using the conjugated spores, we asked whether SH16 spores expressing TcdA26-39 

IgG could subtract C. difficile toxins from a crude cell-free lysate. Incubation of conjugated 

spores with toxin-containing lysates for just 5 min reduced toxicity by 90%. Interestingly, 

PY79 spores also had some ability to bind TcdA26-39 antibodies and were able to provide a 

modest reduction (10-20%) in toxin activity. Used as an example, this experiment does 

demonstrate that spores that express and display streptavidin might have a potential for 

therapeutic purposes, for instance in oral administration of antibodies. 

 

4.5 Conclusion  

In conclusion, it was shown that clones made by insertion of a chimeric gene into thy 

genes can be used for various purposes. Immunised mice with SH14 that express TcdA26-39 

on the spore surface showed that it could stimulate an immune response. Spores expressing 

streptavidin can also be used for therapeutic purposes as it was shown that SH16 spores 

conjugated with anti-TcdA26-39 antibodies could subtract C. difficile toxins from a crude cell-

free lysate. Finally, two clones which express Subtilisin E and Amylase E showed activity 

for casein and starch degradation respectively. Proving the proteins expressed and displayed 

on these clones are functional and the fact that these clones were made with the use of an 

antibiotic-resistant gene as a selection marker and that they are thymine dependent, indicates 

that a thy-insertion cloning system has excellent potential for environmental and applied 

purposes.  
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CHAPTER 5 

ARE THE HYPERVIRULENT STRAINS OF C. 

DIFFICILE LESS INFECTIOUS? 
 

5.1 Introduction 

5.1.1 Bacterial colonisation 

Infection is the presence and invasion of a host by disease-causing organisms such 

as bacteria, fungi and viruses. For any organism to be able to cause an infection, it must enter 

the body, colonise and multiply. Colonisation, which is the first step of microbial infection, 

is defined as the establishment of a pathogen in an area such as skin and intestine (Dani, 

2014). Routes of entry for microorganisms into the host are through the digestive tract, the 

urogenital tract, the conjunctiva and the respiratory tract. The surface area of the urogenital, 

respiratory and digestive system mucosa is between 300-400 square meters and therefore 

makes a primary site of contact with microorganisms. These mucous membranes consist of 

three layers: an epithelial cell layer that secretes mucus, an underlying connective tissue 

called lamina propria, and a layer of smooth muscle. Each of these layers constitutes frontline 

barriers that limit the adherence and invasion of both pathogenic or commensal bacteria. 

Despite this, microorganisms have evolved a wide range of strategies to adhere to, invade a 

host organ, resist and overcome the multiple host defenses mechanisms at the surface (Ribet 

and Cossart, 2015).  
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The adhesion of microorganisms such as bacterial pathogens to eukaryotic cells or 

tissue surfaces is an important aspect of host colonisation. Colonisation prevents the removal 

of the pathogen by different immune system clearance mechanisms. The adherence of a 

bacterium to the host’s surfaces, in its simplest form, requires a ligand and a receptor. 

Usually, such receptors are specific peptide residues or carbohydrates on the surface of 

eukaryotic cells. The bacterial ligand, which often has a complex molecular structure and is 

present on the bacterial cell surface, is called an adhesin, which interacts with the host cell 

receptor (Pizarro-Cerdá and Cossart, 2006, Kline et al., 2009). The common feature about 

ligands and receptors is that they come in a closely matched pair, with a ligand recognising 

and binding to one or a few target receptors, and the receptor is specific to one or few ligands. 

So far, a wide range of adhesins for the surface of bacteria has been identified, and these 

adhesins recognise different receptors on the host cell surface such as cadherins or integrins, 

which include transmembrane proteins, collagen, laminin, elastin or fibronectins that are 

components of the extracellular matrix (Pizarro-Cerdá and Cossart, 2006, Kline et al., 2009, 

Cossart and Roy, 2010, Chagnot et al., 2012). Pili are a well-characterised representative of 

the first class of structures involved in the attachment of the bacteria to host cells. Pili are 

polymeric hair-like appendages that are located on the surface of the bacteria (Kline et al., 

2009). The tips of the pili are usually involved in binding to the host cells. For instance, the 

tip of the pili of the uropathogenic strains of E. coli that colonise in the urinary tract and 

cause kidney infection are constituted by an adhesion factor called PapG, which is involved 

in attaching glycosphingolipids of the kidney epithelium (Roberts et al., 1994).  

 

5.1.2 C. difficile spore structure and proteins  

The morphology and structure of C. difficile spores are similar to other Gram-positive 

endospore-forming bacteria such as B. subtilis, although it has a notably different outermost 
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layer as the protein composition of this layer is considerably different compared to other 

Gram-positive bacteria (Figure 5.1) (Paredes-Sabja et al., 2014). Like B. subtilis, the coat 

layer of the C. difficile spore is also a proteinaceous layer that is important for protecting the 

spore from proteolytic enzymes such as trypsin and proteinase K (Escobar-Cortés et al., 

2013). The sac-like layer of the C. difficile spore, called the exosporium, encasing the coat 

layer. The exosporium, the outermost layer of the spore, interacts with environmental 

surfaces and other cells (Bozue et al., 2007a, Chen et al., 2010); and, importantly, it is not 

impermeable, allowing the passage of small molecules, e.g., amino acids and sugars (Ball et 

al., 2008). In most strains of C. difficile, the exosporium has hair-like projections that 

interacts directly with the surface of the spore coat layer (Barra-Carrasco et al., 2013, 

Paredes-Sabja et al., 2014). There is some uncertainty as to the stability of the exosporium 

as some studies have suggested that this layer is fragile and easily lost (Permpoonpattana et 

al., 2011b, Permpoonpattana et al., 2013); moreover, several other studies have suggested 

that the exosporium is relatively stable and is only removed by proteolytic enzymes (e.g., 

protease or proteinase K) and sonication (Barra-Carrasco et al., 2013, Escobar-Cortés et al., 

2013, Pizarro-Guajardo et al., 2014). The exosporium layer is also found in the spore of the 

B. cereus group such as B. anthracis. In contrast to the C. difficile exosporium, most 

members of B. cereus exhibit the hair-like projection of the exosporium although these do 

not interact directly with the surface of the coat layer (Pizarro-Guajardo et al., 2016). The 

exosporium morphology of C. difficile is strain dependent. For instance, spores from C. 

difficile 630 (CD630) have a compact exosporium layer whereas spores of R20291 or M120 

have similar exosporium structures to B. anthracis (Paredes-Sabja et al., 2014). Interestingly 

all strains of C. difficile produce spores with two distinctive thicknesses of exosporium: 

either thin or thick (Pizarro-Guajardo et al., 2016). A mass spectrometry (MS/MS) analysis 

of the exosporium of CD630 spores identified 184 proteins. Diaz-Gonzalez et al. (2015) 



Chapter 5: Are the hypervirulent strains of C. difficile less infectious? 

 

126 

 

reported that, out of these 184 identified proteins, six are possibly involved in pathogenicity; 

six might be involved in spore resistance; seven are characterised as coat and/or exosporium 

proteins; 13 are uncharacterised; and 146 are cytosolic proteins (Díaz-González et al., 2015). 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

The CdeC (C. difficile exosporium cysteine-rich protein), an exosporium protein, has 

a unique assembly mechanism, and it plays an essential role in the correct assembly of the 

exosporium and the coat layer. Based on a Western blot analysis of CD630 and R20291 

spores treated with proteinase K (resulting in spores with no exosporium), no 

immunoreactive band corresponding to CdeC was observed, suggesting that CdeC is 

localised in the exosporium layer (Paredes-Sabja et al., 2014). Barra-Carrasco et al. (2013) 

reported that a mutated cdeC gene can have various effects on the exosporium. They 

constructed a Δcdec isogenic knockout mutant of R20291, and, in comparison to the wild-

Core  

Exosporium 

Coat 

Cortex 

Figure 5.1: Spore structure of C. difficile. Similar to B. subtilis spores, C. difficile 

spores consist of a core (yellow), cortex (green) and the coat layer (blue). C. difficile 

spores also exhibit an extra layer, exosporium (black), that surrounds the coat layer. The 

hair-like filaments are believed to be BclA (Bacillus collagen-like protein of anthracis) 

proteins.  
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type R20291, they showed that (a) the exosporium in Δcdec is largely missing, (b) the mutant 

spores were more sensitive to lysozyme, heat and ethanol treatment in comparison to the 

wild-type, and (c) the level of adhesion of the mutant spores, despite the absence of the 

exosporium layer, to intestinal epithelial cell line was higher than the wild-type spores 

(Barra-Carrasco et al., 2013).  

 

The exosporium of CD630 spores also exhibits three BclA orthologs encoded by 

bclA1, bclA2, and bclA3 genes. The BclA protein, first identified in B. anthracis, is a 

glycoprotein and the primary component of the exosporium in some spore-forming bacteria 

(Sylvestre et al., 2002). It consists of three domains: an N-terminal domain, a central 

collagen-like region and a C-terminal domain. Similar to B. anthracis, all three BclA 

proteins of C. difficile spores also consist of three domains: the N-terminal domain involved 

in the localisation of the BclA protein and is anchored to the exosporium layer, a central, 

collagen-like domain formed by GXX (mostly GPT) repeats; and a C-terminal domain which 

in B. anthracis meditates the trimerization of the BclA monomers (Figure 5.2) (Pizarro-

Guajardo et al., 2014). The predicted mass for BclA1, BclA2, and BclA3 are 68, 49 and 58 

kDa, respectively. However, the Western blot analysis of all three BclA proteins showed a 

48-kDa immunoreactive band which suggests the post-translational cleavage and 

glycosylation of these proteins (Díaz-González et al., 2015). In C. difficile, BclA1 and BclA3 

are thought to form a stable dimer or trimer complex similar to BclA in B. anthracis (Liu et 

al., 2008), with a high molecular weight of ~120 kDa (Díaz-González et al., 2015).  

 

Phetcharaburanin et al. (2014) constructed bclA mutant strains (bclA1-, bclA2-, and 

bclA3-), derivatives of the wild-type CD630, and investigated the phenotype of each mutant. 

They found that the spores of bclA1- and bclA2- strains showed substantial aberration on  
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their outermost layer, yet spores from bclA3- did not show any apparent defect in their outer- 

most layer compared to wild-type spores. They also reported that BclA proteins have an 

effect on the hydrophobicity of the spore as all three bclA mutants were significantly less 

hydrophobic than wild-type spores. Moreover, spores of all three bclA mutants showed faster 

germination than the wild-type spores. Therefore, the absence of BclA1 and BclA2 proteins, 

but not BclA3, impairs the outermost layer of mutant spores. Furthermore, the absence of 

these genes results in spores with lower hydrophobicity and faster germination rates than the 

isogenic wild-type spores. Deleting bclA in B. anthracis also resulted in a reduction of 

hydrophobicity and an increase in germination rate (Brahmbhatt et al., 2007).  

 

5.1.3 Colonisation of C. difficile  

C. difficile is the most common cause of hospital-acquired antibiotic-associated 

diarrhea in the developed countries with high morbidity and mortality (Enoch and Aliyu, 

2012). The dormant spore of C. difficile is the primary agent of transmission which is due to 

the strict anaerobic requirement of the bacterium. During antibiotic therapy, the spores can 

attach to the infected patient gut and colonise the GI-tract where they can germinate to 

become live cells, outgrowth, proliferate and result in the initiation of CDI (Songer and 

CD630 BclA1 

 CD630 BclA2 

 CD630 BclA3 

Figure 5.2: Schematic representation of different types of BclA protein of CD630. 

All BclA1, BclA2 and BclA3 consist of three regions: The N-terminal region (red), the 

central collagen-like region (yellow), and the C-terminal (green). The highest sequence 

similarity of all BclA is in the collagen-like region. 
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Anderson, 2006). This can result in shedding a large number of spores in the faeces 

(Donskey, 2010). The abundant presence of the three BclA orthologs on the spore surface 

makes them a prime candidate in the colonisation of C. difficile spores and thus 

Phetcharaburanin et al. (2014) investigated the role of three BclA proteins on host 

colonisation. They performed an ID50 experiment to investigate the colonisation of all three 

bclA mutants in mice. They reported that bclA1- mutants had impaired colonisation 

efficiency and showed that, to infect 50% of mice, the required number of spores was 2-logs 

higher compared to the wild-type CD630. Moreover, no spores of bclA1- were detectable 3 

days post infection. They also reported that the ID50 of the hypervirulent strain R20291, 

which has a truncated BclA1 protein was 1 log lower than the bclA1- mutant and needed 

more spores that were required to colonise the mice than for CD630. The truncation of BclA1 

in R20291 is the result of an early stop codon caused by a point mutation that reduces the 

size of the BclA1 to only 48 amino acids.  These data suggest that BclA1 plays an important 

role in the colonisation of C. difficile. In B. anthracis, however, the BclA protein has not 

been shown to have a significant role in pathogenicity in mice and guinea pigs (Bozue et al., 

2007a), and Brahmbhattet et al. (2007) showed that the LD50 (lethal dose, 50%) of a bclA 

mutant strain of B. anthracis was similar to the isogenic wild-type strain. 

 

5.2 Aim  

The aim was to identify the ribotypes and bclA genes in 45 human clinical isolates 

of C. difficile.  It is proposed that BclA1 is involved in the colonisation of CD630 with 

mutant bclA1 which needs higher CFU to colonise. In this work, the role of various types of 

BclA1 in different ribotypes will be investigated, and various toxigenic ribotypes strains 

with different BclA1 size will be tested for their sporulation, in vitro cell-cytotoxicity and 

colonisation. The presence of bclA2 and bclA3 in different ribotypes will be investigated.  
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5.3 Results 

5.3.1 Genotypic characterisation of clinical isolates 

A total of forty-five clinical isolates of C. difficile were obtained from Dr. Scott Curry 

(University of Pittsburgh Medical Center Presbyterian, Pittsburgh, USA). These strains were 

analysed for the ribotypes and the presence of bclA1, bclA2, and bclA3 genes. PCR  

ribotyping is a method based on the heterogeneity of 16S-23S intergenic spacer regions of 

ribosomal RNA and is a preferred method used for genotyping C. difficile (Bidet et al., 

1999). Six reference strains obtained from different sources were also used in this 

characterisation (see Table 5.1).  

 

a) Ribotyping 

All the strains examined in this study are summarised in Table 5.1. From the clinical 

isolates, eighteen different ribotypes were identified with 42% (nineteen strains) of them 

being ribotype 027 (R027). Four of the forty-five strains were non-typeable for which the 

reason was unclear. The remaining strains showed a variety of different types of ribotypes 

as shown in Table 5.1.  

 

b) bclA typing 

To check the presence of the three bclA genes in the clinical isolates and to identify 

the type of bclA1 they have, PCR was performed. For bclA2 and bclA3, only the presence of 

these genes was confirmed; however, for bclA1, the PCR products were sequenced (Table 

5.1). All strains of ribotype R027 contained truncated bclA1. In all strains from R017 and 

R078, bclA1 was deleted, and the remaining strains, except R111, showed full-length bclA1. 

A gene that encodes for a bclA1 with 71 amino acids was detected in R111. Finally, the 

presence of bclA2 and 3 was confirmed in all strains (Table 5.1).  
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The different types of bclA1 genes that were identified previously are genes that 

encode for a 693-amino acids protein (full-length) and genes that express a 48-amino acids 

protein (Phetcharaburanin et al., 2014). In this study, a new type of bclA1 was identified that 

encodes for a 71-amino acids protein (Figure 5.3). Based on the nucleotide analysis, this 

truncation is the result of a thymine insertion and a thymine substitution (adenine to thymine) 

at amino acid 48 and 49, respectively, which changes the open reading frame (ORF), and, 

after 71 amino acids, it ends at a stop codon (Figure 5.4).  

 

5.3.2 Identifying the clades of clinical isolates 

Multilocus sequence typing is another genotypic method using the sequence of 

internal fragments of seven house-keeping genes (Griffiths et al., 2010). Each unique 

combination of these seven alleles is called an allelic profile or sequence type (ST). C. 

difficile strains based on similarity obtained from multilocus sequence typing can be divided 

into six groups, otherwise known as six clades. Clades one to five represent the toxigenic 

strains, and clade six represents non-toxigenic strains. Clade two and clade four represent 

the hypervirulent strains and strains lacking toxin A respectively. To identify which clades 

the clinical strains belong to, the ribotypes from clinical strains were compared to data 

available from other publications (Griffiths et al., 2010, McMillen et al., 2016) in which the 

ribotypes and MLST been compared. Interestingly, once the clades for different ribotypes of 

the clinical isolates were identified (although there was no strain representing clade three),  

a pattern based on the length of bclA1 could be identified (Table 5.1).  
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Original strain name Source1 Origin Ribotype2 Clade3 bclA14 bclA2 bclA3 

Reference Strains        

- LL Pig R078 5 Deleted + + 

- LL  R010 1 Full length + + 

630 

(ATCC® BAA-1382™) 

 

NF 

 

Human 

 

R012 

 

1 

 

Full length 

 

+ 

 

 

+ 

VPI10463 NF  R087 1 Full length + + 

CD196 NF Human R027 2 Truncated48 + + 

R20291 TL Human R027 2 Truncated48 + + 

Clinical Strains     
 

  

4 SC Human R056 1 Full length + + 

25 SC Human R078 5 Deleted + + 

32 SC Human R027 2 Truncated48 + + 

38 SC Human R038 NI Full length + + 

Table 5.1: Genotypic characterisation of various C. difficile clinical strains 
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41 SC Human R027 2 Truncated48 + + 

42 SC Human R001/072 1 Full length + + 

43 SC Human R027 2 Truncated48 + + 

46 SC Human R027 2 Truncated48 + + 

83 SC Human R027 2 Truncated48 + + 

101 SC Human R078 5 Deleted + + 

119 SC Human R002 1 Full length + + 

168 SC Human R027 2 Truncated48 + + 

193 SC Human Nt NI Full length + + 

199 SC Human R014 1 Full length + + 

203 SC Human Nt NI Full length + + 

206 SC Human R054 NI Full length + + 

208 SC Human R017 4 Deleted + + 

222 SC Human R027 2 Truncated48 + + 

251 SC Human R001/072 1 Full length + + 

335 SC Human R027 2 Truncated48 + + 

336 SC Human R336 NI Full length + + 
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1385 SC Human R027 2 Truncated48 + + 

1395 SC Human R401 NI Truncated48 + + 

1402 SC Human R027 2 Truncated48 + + 

1407 SC Human R027 2 Truncated48 + + 

1411 SC Human R027 2 Truncated48 + + 

1433 SC Human R078 5 Deleted + + 

1498 SC Human R056 1 Full length + + 

1500 SC Human R027 2 Truncated48 + + 

1575 SC Human Nt NI Full length + + 

1578 SC Human R027 2 Truncated48 + + 

1634 SC Human R005 1 Full length + + 

1639 SC Human R277 NI Full length + + 

1647 SC Human R017 4 Deleted  + + 

1652 SC Human R027 2 Truncated48 + + 

1655 SC Human Nt NI Full length + + 

1667 SC Human R103 1 Full length + + 

1668 SC Human R027 2 Truncated48 + + 
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1679 SC Human R054 NI Full length + + 

1682 SC Human R075 NI Truncated48 + + 

1685 SC Human R027 2 Truncated48 + + 

1688 SC Human R087 1 Full length + + 

1693 SC Human R111 1 Truncated71 + + 

1696 SC Human R027 2 Truncated48 + + 

1704 SC Human R027 2 Truncated48 + + 

 

 

 

 

 

 

 

 

1 NF, Neil Fairweather, Imperial College, London, UK; TL, Trevor Lawley, Sanger Center, Cambridge, UK; LL, Len Lipman, Univ. 

Utrecht, Netherlands; SC, Scott Curry, UPMC Presbyterian, Pittsburgh, USA. 

2 Nt (non-typeable) 

3 NI (not identified) 

4 Full length= 693 amino acids., truncated48= 48 amino acids, truncated71= 71 amino acids.  
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5’ 3’ ppIB bclA1 (693 aa) ppaC 

5’ 3’ ppIB bclA1 (48 aa) ppaC 

5’ 3’ ppIB bclA1 (71 aa) ppaC 

frameshift 

nonsense mutation 

Figure 5.3: Schematic diagram of different types of bclA1 gene. Panel A shows the full length of bclA1, panel B; 71 codon bclA1 

(bclAΔ622) caused by a frameshift mutation, and panel C shows the 48 codon bclA1 (bclAΔ645) caused by a nonsense mutation. ppIB: 

peptidylprolyl isomerase B; ppaC: manganese-dependent inorganic pyrophosphatase.  
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… … ACT TTT TTT AAA GTG AGA ATA … … … 

 

… … ACT TTT TTT TAA  GTG AGA ATA … … … 

K
49

 

* 

5’  

5’  

bclA1645 

bclA1622 

5’  

5’  

… … TTG ATT ACT TTT TTT AAA GTG AGA … … / / … CAT ATT GAT TCA AAT AAG 

… … TTG ATT ACT TTT TTT TTA AGT GAG … … //  …  TCA TAT TGA TTC AAA TAA 

T-insertion 

* * 

D
72

 

Full length 

Full length 

Truncated
48

 

Truncated
71

 

A to T substitution 

Figure 5.4: Nucleotide analysis of different bclA1. Panel A shows the aligned nucleotide of full length and truncated bclA1 encoding for 

48 amino acids (truncated48). At codon 49 a base substitution changes a lysine (K) into a stop codon. Panel B shows the new type of bclA1 

encoding for 71 amino acids (truncated71) aligned with full length bclA1. In truncated71 bclA1, a thymine-base insertion and also an adenosine 

(A) to thymine (T) substitution changes the ORF, and, after 71 codons, codon 72 changes from aspartic acid (D) into a stop codon (*). 
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5.3.3 Pattern of bclA1 in different clades 

 The different forms of bclA1 that were identified from the clinical strains from 

different clades showed a reduction in size from clades one to five. However, the clinical 

isolates did not contain any strain that represents clade three. To investigate the pattern, 

different strains representing each clade were obtained from Dr Michelle Cairns (C. difficile 

ribotyping network [CDRN] London Barts Health). These strains were characterised for the 

type and the presence of bclA1, 2 and 3 and finally what kind of bclA1 they carried. Table 

5.2 shows the characterisation result performed on the reference strains for each clade. 

Strains in clade one showed full-length bclA1. In both clades two and three, truncated bclA1 

was identified. Finally, in clades four and five, bclA1 gene was absent. The presence of bclA2 

and 3 was confirmed in all strains with one exception: clade three, which showed a partially 

deleted bclA2 (Figure 5.5). The presence of toxin A and toxin B gene were also confirmed 

in all strains except clade four in which tcdA was deleted (Table 5.2). It should be noted that 

since the pattern of bclA1 observed was from a small sample size, a larger sample size of 

different ribotypes, considering the huge number of different C. difficile ribotypes, needs to 

be checked to better understand the pattern of bclA1 seen within different clades and whether 

the pattern was seen is correct.   
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Ribotype 

 

Clade Toxin A&B bclA1 bclA2 bclA3 

106 1 A+ B+ Full length + + 

015 1 A+ B+ Full length + + 

002 1 A+ B+ Full length + + 

176 2 A+ B+ Truncated48  + + 

027 2 A+ B+ Truncated48 + + 

023 3 A+ B+ Truncated48  Partially deleted + 

017 4 A- B+ Deleted + + 

078 5 A+ B+ Deleted  + + 

125 5 A+ B+ Deleted + + 

Table 5.2: Genotypic characterisation of reference strains of different clades 

 

  



Chapter 5: Are the hypervirulent strains of C. difficile less infectious? 

 

140 

 

 

 

 

 

 

 

 

 

 

 

 

 

5’ 
 

5’ 
 

3’ 
 

3’ 
 

dapB2 
 

dapB2 
 

bclA2 (558) 

aa) 
hpt 
 

hpt 
 

bclA2 
 

non-coding 
 

R012 

(CD630) 

 

R012 

(CD630) 
R023 

Figure 5.5: Different types of bclA2. R012 (CD630) has full-length bclA2 whereas, in R023, the bclA2 gene is partially deleted. The 

gene dapB2: 4-hydroxy-tetrahydrodipicolinate reductase, and hpt: hygromycin phosphotransferase.  
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5.3.4 The role of BclA1 in colonisation of C. difficile 

The question that needs to be addressed is whether, given the bclA1 pattern seen in 

different clades, the infectiousness is reduced from the obtained strains of clade one to clade 

five. To address this question, an ID50 for colonisation: that is, the number (CFU) of spores 

of a C. difficile strain required to infect 50% of animals using colonisation as an indicator of 

infection was determined. Only one strain from each clade was tested, and CD630 was used 

as control. Groups (n=4) of mice (C57BL/6) were dosed with spores (using doses of 102, 103 

or 104 CFU) from different strains of different clades. Mice were culled after 24h and the 

CFU, and the level of toxin A and toxin B in their caecum determined. The detection of C. 

difficile CFU indicated successful colonisation. ID50 was calculated (Ozanne, 1984). The 

results (Figure 5.6) showed that 102 spores of clades one, three, four, and five were required 

to infect 50% of the mice. However, mice dosed with the strain from clade two needed ~103 

spores to infect 50% of the mice (Table 5.3). The results indicate that the presences of BclA1 

on the surface of different non-isogenic strains, is not a necessity for better colonisation. In 

this study, the presence of toxin A and toxin B in the group infected with 103 spores was also 

confirmed. This result showed that mice infected with R176 (clade two, hypervirulent strain) 

had the highest level of toxin A and toxin B present in the caecum compared to the group, 

one of the signs of virulent strains (Figure 5.7).  Although Griffiths et al. (2010) only 

identified strains in clade 2 as hypervirulent strains, nowadays other strains from different 

clades are also considered as hypervirulent such as hypervirulent R078 lineage isolates 

including R078 and  R126,  and R023 from clade 3  (Valiente et al., 2014, Wu et al., 2016).  
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Figure 5.6: CFU determination in infected mice caecum. Groups (n=4) of C57BL/6 (7-8 weeks old, female, Charles River) were 

administered with two doses of clindamycin (30 mg/kg) at day 1 and day 3 by intra-gastric gavage. At day 8 mice from different groups were 

dosed with different strains of C. difficile spores. Caeca, 24h post-infection, were removed aseptically, heat treated (68oC, 30 min) and the CFU 

was determined. Panel A (102 spores), panel B (103 spores) and panel C (104 spores) show groups of mice dosed with different amounts of C. 

difficile strains.  
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Figure 5.7: Toxin A and toxin B determination of caeca of infected mice. Toxin A and toxin B from groups dosed with 103 spores were 

determined by a capture ELISA method. Both toxin A and toxin B were highest in the group infected with R176 (clade two) which is a 

hypervirulent strain. Panel A shows the result for toxin A, and panel B shows the result for toxin B. * (p = 0.02), ** (p = 0.003), *** (p < 

0.001).  
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5.3.5 In vitro sporulation and cell cytotoxicity of strains from different clades 

The sporulation of the five strains for the five clades (Table 5.3) was measured in 

BHIS broth for five days (Figure 5.8). CD630 (R012) was used as a control strain. After 

24h of incubation, the sporulation of all strains was essentially identical, with approximately 

103–104 spores per ml; however, at day 2 to day 5, the sporulation of R176 per ml was ~1-

log higher than other strains. For cytotoxicity, strains were grown in TY broth for 72h, and 

every 24h 5 ml of each culture was removed, and the level of toxin was measured on HT29 

and Vero cells. Again, in this method, CD630 was used as a strain positive for toxin A and 

toxin B expression. At all time-points, R176 was the most cytotoxic to both Vero and HT29 

cells (Figure 5.9). Although no cytotoxicity effect is expected from R017, which is a tcdA

Clade Ribotype ID50
2 

1 R015 1 X 102 

 

2 

R176 

 R0273 

1 X 103 

1 X 103 

3 R023 1 X 102 

4 R017 1 X 102 

5 R078 1 X 102 

1 Groups of mice were first treated with clindamycin and after 5 days mice were dosed 

once with (102,103or 104/ dose) spores of different C. difficile strains. After 24h, mice 

were culled, caeca were removed, and CFU/g of caeca was determined. Colonisation 

was defined as animals carrying > 103 spores/g of caecum.  

2  Dose of spores required to infect 50% of mice (ID50) was calculated (Ozanne, 1984). 

3 R027 is clade two, and, in a previous study, it also had an ID50 of 103 

(Phetcharaburanin et al., 2014). 

Table 5.3: Infectivity of spores of different C. difficile strains in mice1 
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Figure 5.8: Sporulation of clade one to five representative strains. Sporulation of different strains were measured in BHIS broth. At time-

points, 24h and 96h, 1 ml of each culture removed, heated to kill vegetative cells, and the CFU/ml was measured. Panel A; CFU/ml after 24h, 

and panel B shows the CFU/ml after 96h. There was no significant difference between each group. This experiment was replicated three times.  
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Figure 5.9: Cytotoxicity effect of clades one to five representative strains. Cytotoxicity of different strains were measured on two cell-lines, 

HT29 and Vero cells. Panel A shows the cytotoxic effect on HT29 cells, and panel B shows the cytotoxic effect of different strains on Vero 

cells. ** is a p-value of < 0.005 and *** is a p-value of <0.001. This experiment was replicated twice. 
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negative strain, it showed a very low cytotoxic effect on the HT29 cell. A similar result for 

R017 is also shown previously (Carter et al., 2012).  

 

5.4 Discussion  

A previous study on initial colonisation showed that BclA1 is important for the initial 

colonisation in the host gut (Phetcharaburanin et al., 2014). To extend on this, forty-five 

clinical strains isolated from humans were further studied. The study had two goals. First, it 

sought to characterise the clinical strains by identifying their ribotypes, as well as to 

determine the types of bclA genes they carry. The second goal was to test the colonisation 

of different strains with a different type of bclA1 in vivo. Identification of ribotypes revealed 

that the majority of the clinical isolates were R027, reported continuously as strains 

associated with high incidence and mortality (Kotila et al., 2011, van Beurden et al., 2016, 

Suzuki et al., 2017). Recently, there have been reports of the emergence of new strains 

associated with higher incidence: R078, R002, and R106 (Hung et al., 2016, van Dorp et al., 

2017). In fact, ~7% of the clinical strains were R078, making them the second highest among 

the clinical isolates. Next, all strains were checked for the presence or absence of bclA genes 

within the genome of the clinical isolates. Based on nucleotide analysis, all hypervirulent 

strains, R027, showed truncated48 bclA1. The full-length bclA1 was present in the majority 

of remaining strains and deleted in a minority. A new type of bclA1 was discovered which 

belongs to R111, encoding for 71 amino acids peptide. The presence of bclA2 in all strains 

was confirmed. Finally, the strains were arranged into different clades by comparing the 

PCR ribotypes to the ST identified in various publications.  

 

Different reference C. difficile strains, based on the results from the clinical isolates,  
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were obtained from clades one to five and were checked for the type of bclA1 they had. 

Interestingly, clade one strains had the full-length bclA1 gene, clades two and three carried 

the truncated48 bclA1 gene, and, finally, in clades four and five, the bclA1 gene was absent. 

This was an unusual and intriguing pattern, and this could have helped to illustrate and 

understand better the role of BclA1 in initial colonisation. The bclA2 and bclA3 genes were 

present in all strains with one exception: R023, which had a partially deleted bclA2 gene. It 

is likely that C. difficile spores exhibited only one bclA gene in the past, and, through 

evolution, the presence of three bclA genes might have been a result of duplication. The 

higher expression of BclA on the exosporium might have played a significant role, e.g., more 

successful colonisation. The duplication of the bclA gene is also seen in B. anthracis, as this 

species carries bclA and bclB in its genome (Waller et al., 2005). The presence of three BclA 

proteins on the spore surface might have been important for the colonisation of the C. difficile 

spore in the past, although Phetcharaburanin et al. (2014) showed that strains of CD630 with 

mutated bclA2 or bclA3 did not have any effect on colonisation. Therefore, this study was 

designed to investigate the role of BclA1 in the colonisation of different C. difficile strains, 

and we hypothesised that the colonisation, based on the BclA1 length, of clade one should 

be the highest, clades two and three should have reduced colonisation compared to clade one 

strain, and the least infective strains must be from clades four and five. However, the in vivo 

results were not as expected. In all mice from different clades, except for clade two, only 

100 spores were needed to fully colonise the gut. It should be noted that the study on the role 

of BclA1 in initial colonisation was made by two isogenic strains—wild-type and BclA1 

mutant—and, in this study, non-isogenic strains were used. A point to consider here is that 

deletion of bclA1 as shown by Phetcharaburanin et al. (2014) results in a defect including 

sheet-like materials on the outermost layer. This also suggests that BclA could also play a 

role in exosporium and coat assembly. In B. anthracis, the BclB protein helps to maintain 
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the integrity of the exosporium (Thompson and Stewart, 2008). The defect of the outermost 

layer of C. difficile spores might result in a loss or reduction of the abundance of different 

proteins that might also play a role in colonisation, such as CotE, a spore coat protein, 

recently shown as being involved in binding to mucus and C. difficile with mutated cotE 

strains requiring higher spores to infect mice (Hong et al., 2017a).  

 

The most exciting finding of this study was that the strains from clade two (R176), a 

clade that is genetically similar to the hypervirulent strains, exhibited a lower ability to 

colonise than the other strains. Comparable colonisation patterns were seen previously from 

the strain R20291 (Phetcharaburanin et al., 2014). This reduced colonisation ability of the 

hypervirulent strain observed in this study and reported previously raises the question as to 

whether the hypervirulent strains of clade 2 are less infective. Infectious dose varies 

significantly within different pathogenic species, and it is recognised as influencing the 

severity and dynamics of the disease (Regoes et al., 2002, Li and Handel, 2014). It has been 

reported that the virulence of a pathogen is typically dose-dependent (Read et al., 1999, 

Ebert et al., 2000), although studies of the infectious hematopoietic necrosis virus have 

shown that the most dominant strains with high emergence showed increased virulence over 

time, yet the infectivity was unchanged (Breyta et al., 2016). The seasonal influenza virus is 

another example as it is very common and exhibits low virulence, whereas the pandemic 

virus H1N1 is highly virulent, but it is of rare occurrence. A point to consider here is that 

mice were given a dose of clindamycin at day 1 and day 3, and although the animals were 

infected by C. difficile five days after second clindamycin dose, it is possible that a trace of 

clindamycin is still left in the gut. R20291 from the same clade as R176 has been shown to 

be clindamycin-sensitive previously (Kelly et al., 2016). It could be possible that R176 is 

also sensitive to clindamycin and therefore once the spores germinate, clindamycin would 
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affect the growth and survival of this strain. For this reason, further in vitro experiments to 

test the sensitivity of the strains, especially R176, to clindamycin requires to be carried out.   

 

Hypervirulent strains of C. difficile are generally known for their high sporulation 

and toxin production (Hopkins and Wilson, 2017), and, in this work, both toxin A and toxin 

B extracted from the caecum of the infected animal were significantly higher in the R176 

group. This also agrees with the in vitro cytotoxicity effect of 176 on both HT29 and Vero 

cell lines. However, the CFU results for the extracted spores were similar to those for the 

groups. It should be noted that the mice were culled 24 h post-infection and a longer time 

may be required, as the highest concentrations of spores are usually detected on day 2 and/or 

3 post-infection (Erikstrup et al., 2015). This result also agrees with the in vitro sporulation 

of R176 as a similar spore count to that for the other strains was observed after 24 h. 

Although R176 showed higher sporulation in comparison to the other strains tested in this 

study, it cannot be the only reason as to why this strain disseminates faster and have a high 

incident; as it has been shown by Burns et al. (2011) that neither the total sporulation 

capacity nor the sporulation rate of  different type hypervirulent R027 was higher than non-

R027 strains. Therefore the hypervirulent strains such as R027 must have developed a 

different mechanism that helps them to disseminate faster and colonise better than the other 

non-R027 strains.  

 

It is unclear why clades two and three present truncated BclA1 and in clade four and 

five BclA1 is absence. It is possible that the orthologs of the BclA family of proteins were 

necessary for some purposes in the past, and, as different C. difficile strains evolved, it seems 

that BclA1 is not as important; in fact, losing this protein might even favour these strains. 

For instance, BclA1 could be recognised by macrophages and internalised by phagocytosis; 
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thus, to avoid phagocytosis BclA1 has been truncated or deleted for the spores of clades two 

to five. In B. anthracis, BclA has been shown to be important for the attachment to 

macrophages, as the interaction between the spores and macrophages is necessary for the 

development of anthrax infection (Gu et al., 2012). Yet other reports state that B. anthracis 

with deleted BclA was as infective as the isogenic wild-type and remained entirely virulent 

(Bozue et al., 2007a, Brahmbhatt et al., 2007). Apart from higher sporulation, there could 

be other factors that help for better dissemination of hypervirulent spores such as the ability 

for faster host invasion or more improved resistance to host defence mechanisms or 

antimicrobials. However, it is clear that BclA1 in a non-isogenic strain is not involved in 

initial colonisation.  

 

5.5 Conclusion  

In conclusion, the role of BclA1 in colonisation was investigated. Forty-five clinical 

strains were characterised for their ribotype, toxinotype and the presence of three bclA genes. 

Based on nucleotide analysis, the type of bclA1 has been identified. Strains from different 

clades with different bclA1 were tested for their ability to colonise the mice gut. All strains 

except the strain from clade two showed the need for 100 spores to colonise the gut. 

However, the hypervirulent strain R176 needed 1,000 spores to colonise the mice. Although 

the hypervirulent strains need a higher number of spores to colonise, the occurrence of CDI 

caused by hypervirulent such as R20291 (R027) is the highest. R176 showed higher toxin 

expression and sporulation than other tested strains. However high sporulation is not the 

only reason for the faster dissemination of this strain. Therefore, the hypervirulent strains 

must have developed a different mechanism, helping them to disseminate faster and occur 

more than non-hypervirulent strains. 
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CHAPTER 6 

GENERAL DISCUSSION 

6.1 Concerns over GMOs 

In this study, a technique has been developed where proteins could successfully be 

expressed on the spore surface of B. subtilis. However, the clones constructed by this 

technique will be regarded as GMOs, which is one of the most controversial areas of science. 

The subject of GMOs has prompted considerable debate among scientists and the public. On 

the one hand, many believe that genetic engineering is necessary for the continued success 

of human experiments. It helps to improve the quality and production of plants, for example, 

and also improves human health. For instance, hypovitaminosis A or vitamin A deficiency, 

which is a lack of vitamin A in the blood, causes ~500,000 children each year in developing 

countries to go blind (Sommer et al., 1981, De Luca, 1987). A treatment has been developed 

that contains enough vitamin A to stop the blindness and keep children healthier; it uses a 

genetically engineered strain of rice, currently known as golden rice (Ye et al., 2000). In 

addition, in 2008, a group from the U.K. were able to introduce two genes isolated from 

antirrhinum plants, commonly known as snapdragons, into a tomato to produce a purple 

tomato that has an increased level of anthocyanins, and it was proven that the purple tomato 

tested in mice had anti-cancer properties (Butelli et al., 2008). On the other hand, GMOs 

have met with substantial public opposition. Many people believe that GMOs are unsafe to 

use, since not enough safety tests have been done that can prove that GMOs do not affect 

human health and damage the environment. The public also believes that scientists do not 
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have enough understanding of the risks that can be introduced to human health by GMOs 

(Lucht, 2015). According to a report prepared by the Law Centre of IUCN, the World 

Conservation Union (2004), there are numerous possible environmental risks that can occur 

due to GMOs. For instance, introducing GMOs to an environment increases the possibility 

of interbreeding with wild-type organisms, leading to the disappearance of the novel traits 

in the wild-type unless it confers a selective advantage to the recipient. GMOs can have a 

competitive advantage over the wild-type organism if they are constructed in such a way that 

they can grow faster. This may allow them to become invasive, and if they spread into new 

habitats, they can cause economic and ecological damage. Furthermore, the effect of a 

change in an organism may extend well beyond an ecosystem. It is also impossible to 

eliminate the GMOs once they have spread into the environment. Once the GMOs spread, 

they may horizontally transfer the acquired foreign gene to other microorganisms, which 

may confer a novel trait in a different organism that could have adverse effects on human 

and animal health and the environment, e.g., the emergence of new diseases or enhanced 

pathogenicity. For example, horizontally transferring an antibiotic-resistance gene from 

GMOs into a pathogen would potentially compromise animal and human therapy (Bennett 

et al., 2004). It is also possible that the introduced genes could be inserted into different 

genes, resulting in a novel gene. This could result in disrupting the endogenous gene, which 

could cause an unintended and unpredictable effect. Sometimes, gene transfer from GMOs 

to other organisms could have a long-term impact. It would take a thousand generations for 

a recipient organism to become the dominant form in a population, despite the relatively 

strong selection pressure (Nielsen and Townsend, 2004). While genetic engineering is used 

in many medical applications such as GM insulin, which is widely accepted, the debates 

really heat up when it comes to GM foods. Many animal studies have been designed and 

performed to understand the effect of GM food on animal health. Some studies have shown 
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that GM foods cause significant immune dysregulation, such as upregulation of cytokines 

associated with inflammation, allergy, and asthma (Finamore et al., 2008, Kroghsbo et al., 

2008). Some animal studies also show altered function and structure of the liver, such as 

cellular changes that could accelerate ageing and accumulation of reactive oxygen species, 

as well as altered carbohydrate and lipid metabolism (Kılıç and Akay, 2008, Malatesta et al., 

2008). Another study reported that GM corn could affect fertility, as mice that were fed GM 

corn showed a significant decrease in both litter weight and offspring of mice over time 

(Cyran et al., 2008). In addition, 400 genes that are known to control cell signalling, insulin 

regulation, cholesterol synthesis, and protein synthesis and modification expressed 

differently in mice fed GM corn.  

 

Despite all public fears, protests, and articles on the risks of GMOs, there are already 

GMOs that have been approved to be safe and are currently being produced. For example, 

approved by the Food and Drug Administration (FDA) in the USA, genetically engineered 

planted soybeans and planted maize account for 94% and 93% of these crops (Perry et al., 

2016). The most extensive area for growing GM crops is in the USA, followed by Brazil and 

Argentina. 96% of the total produced cotton in these areas is GM (Wong and Chan, 2016). 

Although these GM crops are approved to be safe for human use and consumption, there 

may still be potential damage to the environment, including contamination of wild species, 

deuteriation of soil, water pollution, gene flow, and a reduction of biodiversity, which could 

be significant environmental concerns. Furthermore, GM techniques are used in developing 

various commercial and therapeutic strategies for both humans and animals. Farrar et al. 

(2005) developed a novel delivery system for biologically active molecules by genetically 

engineering a commensal bacterium, Bacteroides ovatus (Farrar et al., 2005). Using this 

strategy, the production of the immunotherapeutic agent in situ can be controlled and 



Chapter 6: General discussion 

 

156 

 

regulated by dietary factors, and the production of the biologically active molecule could 

result in the development of long-term immunotherapies for inflammatory gut diseases. In 

another study, a strain of Lactobacillus plantarum that has been engineered to express a 

Mycobacterium tuberculosis fusion antigen on the bacterial cell wall was used as a potential 

vaccine strategy against tuberculosis (Kuczkowska et al., 2017). The nasal and oral 

administration of the recombinant Lactobacillus plantarum resulted in induction of specific 

immune responses in mice and in tuberculosis-positive humans, it has evoked proliferative 

antigen-specific T-cell responses in white blood cells. Moreover, a potential oral vaccine 

against Helicobacter pylori was developed by expressing a urease subunit of the animal 

pathogen Helicobacter acinonychis, which is recognised as a major antigen of Helicobacter 

pylori that induces an immune response and protection against infection (Hinc et al., 2010b). 

one of the issues with GM vaccines or even GM crops is in the cloning procedure, where an 

antibiotic-resistance gene is used that serves as a selection marker for selecting transgenic 

cells. These genes can be passed to other species in the environment or human gut, giving 

rise to resistant or multi-resistant pathogens (Bennett et al., 2004, Nicolia et al., 2014). This 

is a serious issue, as the number of antibiotics is limited to pathogenic infections. There is 

also an increasing interest in using spores such as spores of B. subtilis and using them as a 

delivery vehicle. The problem with GM spores is the use of antibiotic-resistance gene in the 

cloning procedure and also their ability to survive indefinitely. If a spore-based vaccine is 

administered orally, they can germinate in the gut, re-sporulate, survive in the faeces and 

thus contaminate the environment. The GM spores can germinate if the condition is 

favourable in the environment and there is the possibility of passing the antibiotic-resistance 

gene to the same or other bacterial species. Another possibility is that the GM bacteria may 

become dominant, while wild-type may be gradually lost.  
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The possibility of the risks involved in GMOs raises several questions: are GMOs 

something that we should be worried about? Is there enough evidence that GMOs have 

negative consequences? Does society just have a negative attitude towards GMOs? There 

are many other dangers to humans that do not get as much attention as GMOs, e.g., plastic 

pollution and radioactive waste. The cloning system that has been developed in this study 

can be an excellent solution for the use of bacterial cells (such as E. coli or other non-spore-

forming bacteria) or spores as a delivery vehicle for both commercial and therapeutic 

purposes for two reasons: i) this cloning method does not require an antibiotic-resistance 

gene as a selection marker and thus stops the concerns over passing on this gene within 

species and the related consequences; ii) The lack of expression of thymidylate synthase 

makes the strain become thymine dependent, and thus, the spores, should they spread in the 

environment, would have a low chance of survival, which would thus eliminate the concern 

over cross breading or any adverse effects on the environment.  

 

6.2 Therapeutic and commercial advantages of clones constructed by thy-insertion 

cloning system 

The species (B. subtilis spore) that has been chosen for microbial display in this study 

has some advantages over other species. There are reports on other species such as 

Lactococcus lactis, Lactobacillus brevis, and E. coli cells that are/can be used for microbial 

display by inserting a chimeric gene into their thy gene and making the clones thymine 

dependent (Åvall-Jääskeläinen et al., 2002, Steidler et al., 2003, Park et al., 2013). However, 

firstly, these species are non-spore forming and thus are more sensitive to harsh 

environmental factors in comparison to robust spores. Secondly, these species have only one 

thy gene, meaning that only one copy of the chimeric gene can be inserted into their genome 
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without disrupting other genes, and according to this study, a higher number of chimeric 

proteins is expressed when two copies of a chimeric gene are inserted into the genome.  

 

In this study, it was also shown that various types of protein could be displayed on 

the surface that can be used both for therapeutic or industrial purposes with various 

advantages. Enzymes such as xylanase and phytase have gained a lot of interest from 

commercial industries because of the potential for reducing phytate in animal feed and foods 

for humans (Konietzny and Greiner, 2004). Expression and purification of the phytase 

enzyme could be costly. Moreover, expressing enzymes on the surface of cells or spores can 

enhance the stability of enzymes (Gribenko et al., 2009). Potot et al. (2010) expressed 

phytase enzyme on the surface of the B. subtilis spore by fusing it to coat proteins. If these 

spores are used commercially for an animal feed, then a high number of GM spores will be 

shed in the faeces of animals that eat the food, leading to higher exposure to GM spores in 

the environment. However, if phytase is displayed on a spore surface using the thy-insertion 

cloning system, then the concern over exposing to environment to GM spores will be 

significantly reduced. 

 

Stabilising protein on the spore surface could also be used to optimise some of the 

therapeutic procedures that are currently used. For instance, monoclonal antibodies 

neutralising toxins of C. difficile resulted in a significant reduction of CDI relapse (Lowy et 

al., 2010, Navalkele and Chopra, 2018). In this study, stabilising anti-C. difficile toxin A on 

the spore surface resulted in denaturing the toxin and reducing its cytotoxicity. It is likely 

that denaturing the toxin by anti-toxin antibodies optimises the efficiency and treatment of 

CDI relapse further, as stabilising the protein on the cell or spore surface results in enhanced 

stability and leads to better delivery to the target (Gribenko et al., 2009, Nguyen et al., 2013). 
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Thus, the strategy introduced in this study for denaturing toxins may be a better potential 

way to treat CDI.  

 

PP108 is a spore vaccine that has been shown to induce an immune response in 

hamsters and thus avoid the colonisation of C. difficile and prevent CDI (Hong et al., 2017b). 

Two different antibiotic-resistance genes have been used in the cloning procedure to produce 

PP108. However, although these spore-based vaccines could be a potential treatment for 

CDI, the antibiotic-resistance gene could be a risk to the environment, and potentially, the 

chimeric genes could also be being passed to other species. A better version of this vaccine 

has been constructed using the thy-insertion cloning system, and it has been proven that it 

induces an immune response similar to PP108, making it a better and safer vaccine for 

treating CDI. Moreover, the spore-based vaccine produced by the thy-insertion cloning 

system, as well as eliminating concern over the environment, can also be safer for humans 

in comparison to other vaccine strategies. For example, live attenuated vaccines that are 

created by reducing the virulence factor of a microbe and are still viable but no longer cause 

disease have been amongst the most successful interventions in medical history. There are 

many different types of live attenuated mucosal vaccines, e.g., Dukoral, which targets Vibrio 

cholerae, or Vivotif, which targets Salmonella typhi (Azegami et al., 2014). However, there 

is a possibility that the weakened pathogen reverts to virulence through componentry 

mutations elsewhere in the genome, back mutation of the attenuating mutation, and 

recombination (Hanley, 2011).  

 

6.3 Role of BclA proteins 

Depside the considerable work on the BclA protein of B. anthracis the exact role of 

BclA is not explicit, and some results in different studies contradict each other. Binding of 
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B. anthracis spores to phagocytic cells and being internalised seems to be an essential step 

in the infection, as B. anthracis possibly uses macrophages as a vehicle, thereby 

disseminating in the host (Gu et al., 2012). It has been shown that CD14, an extracellular 

protein that is anchored to the membrane, can recognise and bind to rhamnose residues of 

BclA and function as a co-receptor for spores attaching integrin Mac-1. This will promote 

inside-out activation of the Mac-1 (CD11b/CD18) by involving TLR2 signalling, thereby 

enhancing spore uptake by phagocytic cells, i.e., macrophages (Oliva et al., 2009). Mice 

lacking Mac-1 or CD14 showed higher resistance to subcutaneous infection with B. 

anthracis spores (Oliva et al., 2008). Moreover, Buzue et al. (2007) showed that spores with 

deleted BclA are internalised by macrophages and have the same virulence to the same extent 

as the wild-type with BclA intact, suggesting that other proteins on the spore surface 

(exosporium) are recognised by phagocyte receptors. Another possibility for the role of BclA 

is that it helps to direct the spores toward phagocytic cells, as B. anthracis spores with deleted 

BclA present higher adherence to fibroblasts and endothelial and epithelial cells but not to 

macrophages (Bozue et al., 2007b). BclA can also play a significant role in protecting the B. 

anthracis spores (Gu et al., 2012, Wang et al., 2016). BclA is involved in the activation of 

the classical complement pathway, a primary mechanism for spore phagocytosis. Deposition 

of C3b, a protein of the complement system and promotor of spore phagocytosis, is 

dependent on C1b recruited by BclA. Spore phagocytosis by mice macrophages resulted in 

significant reduction in spores with deleted BclA, and it appeared that overall survival of 

internalised spores by complement opsonisation was better than spores phagocytes by other 

mechanisms (Gu et al., 2012). 

 

C. difficile does not require being internalised by macrophages for infection, and 

thus, the three BclA proteins may have different roles. An in-depth investigation of the role 
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of the three BclA orthologues was conducted by Phetcharaburanin et al. (2014), who showed 

that only BclA1 is involved in initial colonisation of C. difficile spores. The result in this 

study, except for hypervirulent strains, showed that non-isogenic strains with differences in 

BclA1 length or where BclA1 is absent showed similar colonisation ability as CD630, which 

exhibited the full-length BclA1. This may then disprove that BclA1 is involved in 

colonisation and increases the infectivity in non-isogenic strains. It is likely that BclA1 

proteins play a role on the integrity of the exosporium and correct orientation, localisation, 

and stability of proteins that may have a role in colonisation. It is also possible that in the 

past, similarly to B. anthracis, it used BclA for protection. A point to consider here is that 

CD630 and VPI 10463 (a non-virulence and high-toxin-producing strain) with full BclA1 

are not as infective as hypervirulent R20291, although they have a lower requirement for the 

number of spores to colonise. This brings up the possibility that other molecules or 

mechanisms may be involved that increase the infectivity of spores. Alternatively, losing 

BclA1 may favour the spores from defence mechanisms, as in B. anthracis, BclA is shown 

to be important to induce the complement system and meditate phagocytosis (Bozue et al., 

2007a, Oliva et al., 2009, Gu et al., 2012). Moreover, most strains with high prevalence seem 

to be those either with truncated or deleted BclA. For instance, R017, in which the BclA1 is 

deleted, is reported to have the highest incidence in Asia. In addition, R027 and R078 with 

truncated and deleted BclA1 respectively, caused a significant outbreak in Europe and North 

America (Collins et al., 2013).  

 

Both in this study and others (Merrigan et al., 2010, Vohra and Poxton, 2011), it has 

been found that hypervirulent strains have enhanced sporulation. Increasing the sporulation 

of hypervirulent strains could possibly result in faster dissemination of the spores and could 

be linked to the massive outbreak of these strains. The most predominant strain of C. difficile 
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in Hong Kong, R002, has been associated with enhanced sporulation (Cheng et al., 2011). 

Enhancing the sporulation could result in faster sporadic aerial dissemination, and this may 

be an explanation of the high prevalence of newly emerging strains, including R106 in the 

UK (Sundram et al., 2009), R018 and R078 in Italy, and R018 in Japan and Korea (Baldan 

et al., 2015).  

 

It is not clear at this stage precisely what the role of BclA proteins on the surface of 

C. difficile spores is, with such high abundance and having three orthologues. Possibly, the 

best strategy to understand the role of these proteins is creating isogenic double or triple 

mutant BclA genes and investigating their ability for colonisation, their protection against 

macrophages, the integrity of exosporium, and the abundance of the proteins on the spore 

surface in different non-isogenic strains, though this could be costly. Replacing the full-

length BclA1 gene in strains such as R027and R078 with truncated and deleted BclA1 

respectively could also be another strategy to better understand the role of BclA1. It should 

be noted that in non-isogenic strains, BclA2 and BclA3 may also play roles. Thus, 

constructing single, double, and triple BclA mutants in different, non-isogenic strains and 

performing various tests is necessary and can be very costly if ID50 is performed.  
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Plasmid Sequence1 

pThyA CAGATCATATAAGGAATGAACCGCTGCCAAATATCATAAAAAAGTTGTTAAT

GATCAAATGAATGAAATTAGAGAGAATTTATTTTAAAGAAAGCCCAATTGCA

CATGGACAAATGACAATTGATATTGAGGTAAAATACAATGCATTAAATCAGA

AAAAGCTATTGGAGGATTTAATGTGTTTAGACAATTTCCAATTTGGTATACAC

AAACACCTGACTATTTGAATTTTTATGTACCGCAATATCAAACCATTTCGTAT

AATCCTCAACAATGTTATCAACGGTGTATGTACCAAACTGGCGGTAACTATGA

GCTATGTGACAGACTATGTTATGGAGAAATACAGGTGTAAAAGAGGGGGATT

AACTCCTCTTTAAACACACAGTGAGTGGAATAAGATCCTCACTTTATCTGCAA

GTGCTTAGTATTTGCGATAATATTGCATTCGTAATAAATTATGCTTAGCAACT

GAAAATGAAAGAAGGATATGAATAGTCATGACGCAATTCGATAAACAATAC

AATTCAATTATAAAGGATATTATCAATAATGGAATCTCAGACGAAGAGTTTG

ATGTAAGAACCAAGTGGGACTCAGATGGAACACCGGCACATACTCTAAGTGT

AATCAGTAAGCAAATGAGATTCGACAACTCAGAGGTTCCGATTTTAACGACA

AAAAAGGTTGCCTGGAAAACAGCCATTAAAGAGTTGCTCTGGATTTGGCAGC

TGAAATCTAATGATGTTAATGATTTAAACATGATGGGCGTCCATATTTGGGAT

CAGTGGAAACAAGAAGACGGAACCATCGGACATGCATATGGATTTCAGCTGG

GGAAGAAAAACAGAAGTCTAAATGGAGAAAAAGTGGATCAGGTAGACTATC

TTCTTCATCAATAAGCTTGCATGCCTGCAGGTCGACTCTAGAGGATCCCCCGGGG

GTACCGAGCTCGAATTCTGAAGAACAATCCATCTTCACGCAGACACATTACAAT

GCTGTGGAATCCTGATGAATTAGACGCAATGGCCTTAACGCCATGTGTATACG

AGACACAATGGTACGTTAAACATGGGAAACTCCACCTTGAGGTAAGAGCACG

GAGCAATGATATGGCATTGGGAAATCCATTCAATGTATTCCAGTATAATGTGT

TGCAGCGCATGATTGCTCAAGTGACTGGTTATGAGCTTGGTGAATATATCTTT

AACATTGGGGATTGCCATGTGTACACACGTCATATAGACAATTTGAAAATTCA

AATGGAAAGAGAACAGTTTGAAGCACCTGAACTATGGATCAATCCTGAAGTG

AAAGATTTTTATGACTTTACCATTGATGATTTCAAGTTAATCAACTATAAACA

TGGGGACAAGCTTTTATTTGAGGTAGCGGTTTAATGCTGCCTTTTTATTGTGCA

GTGAATAGATAGCAGGTATCCTAATTTCATTAAGCAATCTGGAAGATGAATA

AAAATTGAAGGACAAACACGTATAATACATAAAAAAGATTAACTCTACAGTT

AATCTTTTTTATTCAGAAGAAAATATCCTAACTTTGAAACTAAATACAAAGTA

AAAGCAATCATTACAGTTCTAGATATTACAATTCCATGAATAGCTAGATCATA

TCCAGCAGGTATCAACGCATTTGTATTACACATAAAATATATAGATATTAGAA

GTGCTACAATAACTAAAATCATTCCAAAAAGACTTGTTTTTTCATATTTCATA

CCAATTTCCACCCTTATTAAAGTTAGGTTTAAACAAAAGAGCTGAAGAAACG

AACTATGACCAGTATGCTCCAAGGAAAACCGCCAGACAATGCTGGCGGCTTT

TTGCTGCTTCGTTTATTTATTAACAGAGATCGTAACGTTATTTCCTGCAACTGA

AACCTTTGCGAAATCC-3’ 

pThyB CCAAATCTGCCGCTCAGTGTTTGCATGGAGAATGTAGAAAAAGTCCTGAACA

AACGTGAAATTATTCATGCTGTTTTGACAGGCCTTGCACTCGATCAGCTTGCA

GAACAGAAACTTCTCCCCGAACCGCTGCAGCACCTTGTTGAAACGGATGAAC

CGCTTTACGGCATAGATGAAATTATCCCGCTTTCAATCGTTAATGTGTACGGG

TCGATCGGTTTGACCAATTTCGGTTATTTGGATAAAGAGAAGATTGGAATTAT

TAAGGAACTTGATGAAAGTCCAGACGGTATTCACACCTTTTTGGATGATATTG

TGGCAGCTCTTGCTGCAGCAGCGGCGAGCAGAATTGCACATACGCATCAGGA

Appendices A 

 thyA and thyB sequences cloned in pThyA and pThyB 
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1 The thy ORF (5’-3’) is shown in grey shading with the start codon in bold and flanking DNA (unshaded). 

The MCS is in italics. Primer annealing sites (forward and reverse) used to verify insertion are underlined 

 

 

 

 

 

 

 

 

 

 

TCTGCAAGATGAAGAAAAAGAACAGGATGAAAAGCCTGTCGTCAGCTGACTA

TAAAAAAATCATTTCTGGGTTCAGAAATGATTTTTTATTGTGTTACACTACTA

GAAGACTACTTTTAAAGGATGAAAAAAATGAAACAGTATAAGGATTTCTGCA

GACATGTTTTAGAGCATGGTGAGAAAAAGGGAGACCGGACTGGGACCGGAA

CAATCAGCACTTTCGGATATCAAATGAGATTTAATTTACGGGAAGGCTTTCCG

ATGCTCACCACTAAAAAACTCCACTTTAAATCAATTGCGCATGAACTGCTGTG

GTTCTTAAAAGGAGATACGAATGTACGCTATCTGCAGGAAAACGGAGTGCGA

ATCTGGAATGAGTGGGCTGATGAAAACGGTGAACTTGGACCTGTATATGGCT

CCCAATGGCGTTCTTGGCGGGGAGCTGATGGAGAAACCATTGATCAAATTTCC

CGTCTTATTGAAGATATTAAAACAAATCCGAACTCCAGACGCTTAATCGTCAG

CGCCTGGAAAGCTTGCATGCCTGCAGGTCGACTCTAGAGGATCCCCCGGGGGTAC

CGAGCTCGAATTCTGATGTTGGTGAAATTGATAAAATGGCGTTGCCGCCGTGCC

ATTGCCTGTTCCAATTCTATGTGTCTGACGGCAAGCTGTCCTGTCAGCTGTATC

AGCGCTCTGCCGATGTTTTCTTAGGTGTGCCGTTTAATATTGCATCTTATGCCC

TCCTAACCATGATCATTGCTCATGTGACTGGGCTTGAACCGGGCGAGTTCATC

CATACGTTTGGTGATGTTCATATTTACCAAAATCATATTGAACAAGTCAATTT

GCAGCTGGAAAGAGATGTTAGACCGCTTCCGCAGCTTCGTTTCGCCAGAAAG

GTTGATTCTATTTTTAACTTTGCATTTGAGGACTTTATCATCGAGGATTATGAT

CCGCATCCTCATATAAAAGGGGCGGTCAGCGTATGATTTCATTCATTTTTGCG

ATGGATGCCAACAGGCTTATCGGCAAAGACAATGATTTGCCGTGGCATTTGCC

CAATGATCTTGCATACTTTAAGAAAATAACATCGGGCCATTCAATCATTATGG

GCCGGAAAACATTTGAATCGATCGGACGTCCGCTTCCAAATCGGAAAAATAT

TGTCGTTACCTCAGCGCCGGATTCAGAATTTCAGGGATGCACGGTTGTCAGTT

CATTAAAGGATGTACTGGACATTTGTTCAGGCCCTGAAGAATGCTTTGTGATC

GGAGGGGCTCAGCTCTATACGGACCTGTTCCCTTATGCGGACAGACTGTATAT

GACGAAAATTCATCACGAGTTTGAGGGTGACCGTCACTTTCCTGAATTTGATG

AATCCAATTGGAAGCTGGTTTCTTCTGAGCAGGGGACCAAAGACGAAAAAAA

CCCGTATGATTACGAATTTCTAATGTATGAAAAAAAGAAATCTTCTAAAGCGG

GAGGATTTTAATTGGTTCGCTACAGCCTTCTAGTGGTTTATATTGTGTATATGC

TGTTAAAAAATATGAAACAATTATTTAATCAAACAATGCTCGATCCCCGTCTG

TCATACAAAAAACAGATGGCTCTTGTGTACGAACAGCCAAAGGCGTTTTTAG

AAGGCTGTATCGGCATCTCCGGTTCAGTTGTGACGATCCATCAGCCAGA-3’ 
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CotC-VP26 

MGYYKKYKEEYYTVKKTYYKKYYEYDKKDYDCDYDKKYDDYDKKYYDHDKKDYDYVVEYKK

HKKHYKLMEFGNLTNLDVAIIAILSIAIIALIVIMVIMIVFNTRVGRSVVANYDQMMRVPIQRRAKV

MSIRGERSYNTPLGKVAMKNGLSDKDMKDVSADLVISTVTAPRTDPAGTGAENSNMTLKILNNTG

VDLLINDITVRPTVIAGNIKGNTMSNTYFSSKDIKSSSSKITLIDVCSKFEDGAAFEATMNIGFTSKNVI

DIKDEIKKK 

 

 

CotB-VP28 

MSKRRMKYHSNNEISYYNFLHSMKDKIVTVYRGGPESKKGKLTAVKSDYIALQAEKKIIYYQLEHV

KSITEDTNNSTTTIETEEMLDADDFHSLIGHLINQSVQFNQGGPESKKGRLVWLGDDYAALNTNEDG

VVYFNIHHIKSISKHEPDLKIEEQTPVGVLEADDLSEVFKSLTHKWVSINRGGPEAIEGILVDNADGH

YTIVKNQEVLRIYPFHIKSISLGPKGSYKKEDQKNEQNQEDNNDKDSNSFISSKSYSSSKSSKRSLKSS

DDQSSKLMDLSFTLSVVSAILAITAVIAVFIVIFRYHNTVTKTIETHTGNIETNMDENLRIPVTAEVGS

GYFKMTDVSFDSDTLGKIKIRNGKSDAQMKEEDADLVITPVEGRALEVTVGQNLTFEGTFKVWNNT

SRKINITGMQMVPKINPSKAFVGSSNTSSFTPVSIDEDEVGTFVCGTTFGAPIAATAGGNLFDMYVHV

TYSGTETE 

 

 

CotB-TcdA26-39 

MSKRRMKYHSNNEISYYNFLHSMKDKIVTVYRGGPESKKGKLTAVKSDYIALQAEKKIIYYQLEHV

KSITEDTNNSTTTIETEEMLDADDFHSLIGHLINQSVQFNQGGPESKKGRLVWLGDDYAALNTNEDG

VVYFNIHHIKSISKHEPDLKIEEQTPVGVLEADDLSEVFKSLTHKWVSINRGGPEAIEGILVDNADGH

YTIVKNQEVLRIYPFHIKSISLGPKGSYKKEDQKNEQNQEDNNDKDSNSFISSKSYSSSKSSKRSLKSS

DDQSSKLASTGYTSINGKHFYFNTDGIMQIGVFKGPNGFEYFAPANTHNNNIEGQAILYQNKFLTLN

GKKYYFGSDSKAVTGLRTIDGKKYYFNTNTAVAVTGWQTINGKKYYFNTNTSIASTGYTIISGKHFY

FNTDGIMQIGVFKGPDGFEYFAPANTDANNIEGQAIRYQNRFLYLHDNIYYFGNNSKAATGWVTID

GNRYYFEPNTAMGANGYKTIDNKNFYFRNGLPQIGVFKGSNGFEYFAPANTDANNIEGQAIRYQNR

FLHLLGKIYYFGNNSKAVTGWQTINGKVYYFMPDTAMAAAGGLFEIDGVIYFFGVDGVKAP 

 

 

CotC-TcdA26-39 

MGYYKKYKEEYYTVKKTYYKKYYEYDKKDYDCDYDKKYDDYDKKYYDHDKKDYDYVVEYKK

HKKHYKLASTGYTSINGKHFYFNTDGIMQIGVFKGPNGFEYFAPANTHNNNIEGQAILYQNKFLTLN

GKKYYFGSDSKAVTGLRTIDGKKYYFNTNTAVAVTGWQTINGKKYYFNTNTSIASTGYTIISGKHFY

FNTDGIMQIGVFKGPDGFEYFAPANTDANNIEGQAIRYQNRFLYLHDNIYYFGNNSKAATGWVTID

GNRYYFEPNTAMGANGYKTIDNKNFYFRNGLPQIGVFKGSNGFEYFAPANTDANNIEGQAIRYQNR

FLHLLGKIYYFGNNSKAVTGWQTINGKVYYFMPDTAMAAAGGLFEIDGVIYFFGVDGVKAP 
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Amino acid sequences of the fusion genes1 
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CotB-SA 

MSKRRMKYHSNNEISYYNFLHSMKDKIVTVYRGGPESKKGKLTAVKSDYIALQAEKKIIYYQLEHV

KSITEDTNNSTTTIETEEMLDADDFHSLIGHLINQSVQFNQGGPESKKGRLVWLGDDYAALNTNEDG

VVYFNIHHIKSISKHEPDLKIEEQTPVGVLEADDLSEVFKSLTHKWVSINRGGPEAIEGILVDNADGH

YTIVKNQEVLRIYPFHIKSISLGPKGSYKKEDQKNEQNQEDNNDKDSNSFISSKSYSSSKSSKRSLKSS

DDQSSIQDPSKDSKAQVSAAEAGITGTWYNQLGSTFIVTAGADGALTGTYESAVGNAESRYVLTGR

YDSAPATDGSGTALGWTVAWKNNYRNAHSATTWSGQYVGGAEARINTQWLLTSGTTEANAWKS

TLVGHDTFTKVKPSAASIDAAKKAGVNNGNPLDAVQQ 

 

 

CotB-subtilisin E 

MSKRRMKYHSNNEISYYNFLHSMKDKIVTVYRGGPESKKGKLTAVKSDYIALQAEKKIIYYQLEHV

KSITEDTNNSTTTIETEEMLDADDFHSLIGHLINQSVQFNQGGPESKKGRLVWLGDDYAALNTNEDG

VVYFNIHHIKSISKHEPDLKIEEQTPVGVLEADDLSEVFKSLTHKWVSINRGGPEAIEGILVDNADGH

YTIVKNQEVLRIYPFHIKSISLGPKGSYKKEDQKNEQNQEDNNDKDSNSFISSKSYSSSKSSKRSLKSS

DDQSSKLAQSVPYGISQIKAPALHSQGYTGSNVKVAVIDSGIDSSHPDLNVRGGASFVPSETNPYQD

GSSHGTHVAGTIAALNNSIGVLGVAPSASLYAVKVLDSTGSGQYSWIINGIEWAISNNMDVINMSLG

GPTGSTALKTVVDKAVSSGIVVAAAAGNEGSSGSSSTVGYPAKYPSTIAVGAVNSSNQRASFSSAGS

ELDVMAPGVSIQSTLPGGTYGAYNGTSMATPHVAGAAALILSKHPTWTNAQVRDRLESTATYLGNS

FYYGKGLINVQAAAQ 

 

 

CotB-amylase E 
 

MSKRRMKYHSNNEISYYNFLHSMKDKIVTVYRGGPESKKGKLTAVKSDYIALQAEKKIIYYQLEHV

KSITEDTNNSTTTIETEEMLDADDFHSLIGHLINQSVQFNQGGPESKKGRLVWLGDDYAALNTNEDG

VVYFNIHHIKSISKHEPDLKIEEQTPVGVLEADDLSEVFKSLTHKWVSINRGGPEAIEGILVDNADGH

YTIVKNQEVLRIYPFHIKSISLGPKGSYKKEDQKNEQNQEDNNDKDSNSFISSKSYSSSKSSKRSLKSS

DDQSSKLETANKSNEVAASSVKNGTILHAWNWSFNTLTQNMKEIRDAGYAAIQTSPINQVKEGNQ

GDKSMRNWYWLYQPTSYQIGNRYLGTEQEFKDMCAAAEKYGLKVIVDAVINHTTSDYAAISDEIK

RIPNWTHGNTQIKNWSDRWDVTQNSLLGLYDWNTQNTEVQTYLKGFLERALNDGADGFRYDAAK

HIELPDDGNYGSRFWPNITNTSAEFQYGEILQDSASRDTAYANYMNVTASNYGHSIRSALKNRNLSV

SNISHYASDVSADKLVTWVESHDTYANDEEESTWMSDDDIRLGWAVIGSRSGSTPLFFSRPEGGGN

GVRFPGKSQIGDRGSALFKDQAITAVNQFHNVMAGQPEELSNPNGNNQIFMNQRGSKGVVLANAG

SSSVTVNTSTKLPDGRYDNRAGAGSFQVANGKLTGTINARSAAVLYSDDIGNAPQVFLENYQTGAV

HSFNDQLTVTLRANAKTTKAVYQINNGQQTAFKDGDRLTIGKGDPIGTTYNIRLTGTNGEGAERTQ

EYTFVKKDPAQTNIIGYQNPDHWGQVNAYIYKHDGGGAIELTGSWPGKAMTKNANGIYTLTLPAN

ADTANAKVIFNNGSAQVPGQNQPGFDYVQNGLYNNSGLNGYLPH 

 

1 The fusion is made of the anchoring motif (Black), heterologous protein (Red) and a HinDIII site (Blue and 

Bold) except for CotB_SA. 

 


