245 research outputs found

    The chemical ecology of seed dispersal in monoecious and dioecious figs

    Get PDF
    1In the nursery pollination system of figs (Ficus, Moraceae), flower-bearing receptacles called syconia breed pollinating wasps and are units of both pollination and seed dispersal. Pollinators and mammalian seed dispersers are attracted to syconia by volatile organic compounds (VOCs). In monoecious figs, syconia produce both wasps and seeds, while in (gyno)dioecious figs, male (gall) fig trees produce wasps and female (seed) fig trees produce seeds. 2 VOCs were collected using dynamic headspace adsorption methods on freshly collected figs from different trees using Super Q collection traps. VOC profiles were determined using gas chromatography-mass spectrometry (GC-MS). 3 The VOC profile of receptive and dispersal phase figs were clearly different only in the dioecious mammal-dispersed Ficus hispida but not in dioecious bird-dispersed F. exasperata and monoecious bird-dispersed F. tsjahela. 4 The VOC profile of dispersal phase female figs was clearly different from that of male figs only in F. hispida but not in F. exasperata, as predicted from the phenology of syconium production which only in F. hispida overlaps between male and female trees. Greater difference in VOC profile in F. hispida might ensure preferential removal of seed figs by dispersal agents when gall figs are simultaneously available. 5 The VOC profile of only mammal-dispersed female figs of F. hispida had high levels of fatty acid derivatives such as amyl-acetates and 2-heptanone, while monoterpenes, sesquiterpenes and shikimic acid derivatives were predominant in the other syconial types. A bird- and mammal-repellent compound methyl anthranilate occurred only in gall figs of both dioecious species, as expected, since gall figs containing wasp pollinators should not be consumed by dispersal agents

    Biologie des populations

    Get PDF

    Chemical mediation and niche partitioning in non-pollinating fig-wasp communities

    Get PDF
    1. The parasitic chalcidoid wasps associated with the species-specific and obligatory pollination mutualisms between Ficus spp. and their agaonid wasp pollinators provide a good model to study the functional organization of communities. 2. However, communities of non-pollinating fig wasps (NPFWs) remain little characterized, and their functioning and evolutionary dynamics are still poorly understood. 3. We studied the communities of NPFWs associated with the monoecious F. racemosa and the dioecious F. hispida. Associated with these two fig species are a total of seven wasp species belonging to three genera. These species present contrasts in life history traits and in timing of oviposition. The species studied are thus broadly representative of the communities of NPFWs associated specifically with fig-pollinator mutualisms. 4. In our study systems, there is temporal segregation of oviposition time among members of NPFW communities.5.We tested the role of volatile chemicals in the attraction of NPFWs associated with these two fig species, and tried to determine if chemical mediation can explain the organization of the communities. 6. We conducted odour choice tests using a Y-tube olfactometer. All the NPFWs studied were shown to use volatile chemicals produced by the fig to locate their host. Furthermore, the signals used by each species depended on the phenological stage of the fig they exploit. 7. Results demonstrated that the pattern of oviposition results from the utilization of volatile signals produced by figs that vary in their composition at different stages of fig development. Thus, chemical mediation allows resource partitioning in the NPFW communities associated with fig-pollinator mutualisms, and suggests hypotheses to explain coexistence in other parasite communities

    Breeding system and pollination biology of the semidomesticated fruit tree, Tamarindus indica L. (Leguminosae: Caesalpinioideae): Implications for fruit production, selective breeding, and conservation of genetic resources

    Get PDF
    In this paper, we provide data on the breeding system of Tamarindus indica, examining fruit production as well as pollen tube growth under different controlled pollination experiments (open, cross and selfpollination). We discuss implications of the results for management for fruit production in Tamarind, conservation of genetic resources and the potential for selective breeding. Observation of the germination and the pollen tubes growth under various pollination modes show that the tamarind is an incompatible species partially. This incompatibility appears at the pre level zygotic (IE on the level of the stigmatic, style and ovary) and post zygotic by the abortion of seeds

    Phylogeographic support for horizontal gene transfer involving sympatric bruchid species

    Get PDF
    BACKGROUND: We report on the probable horizontal transfer of a mitochondrial gene, cytb, between species of Neotropical bruchid beetles, in a zone where these species are sympatric. The bruchid beetles Acanthoscelides obtectus, A. obvelatus, A. argillaceus and Zabrotes subfasciatus develop on various bean species in Mexico. Whereas A. obtectus and A. obvelatus develop on Phaseolus vulgaris in the Mexican Altiplano, A. argillaceus feeds on P. lunatus in the Pacific coast. The generalist Z. subfasciatus feeds on both bean species, and is sympatric with A. obtectus and A. obvelatus in the Mexican Altiplano, and with A. argillaceus in the Pacific coast. In order to assess the phylogenetic position of these four species, we amplified and sequenced one nuclear (28S rRNA) and two mitochondrial (cytb, COI) genes. RESULTS: Whereas species were well segregated in topologies obtained for COI and 28S rRNA, an unexpected pattern was obtained in the cytb phylogenetic tree. In this tree, individuals from A. obtectus and A. obvelatus, as well as Z. subfasciatus individuals from the Mexican Altiplano, clustered together in a unique little variable monophyletic unit. In contrast, A. argillaceus and Z. subfasciatus individuals from the Pacific coast clustered in two separated clades, identically to the pattern obtained for COI and 28S rRNA. An additional analysis showed that Z. subfasciatus individuals from the Mexican Altiplano also possessed the cytb gene present in individuals of this species from the Pacific coast. Zabrotes subfasciatus individuals from the Mexican Altiplano thus demonstrated two cytb genes, an "original" one and an "infectious" one, showing 25% of nucleotide divergence. The "infectious" cytb gene seems to be under purifying selection and to be expressed in mitochondria. CONCLUSION: The high degree of incongruence of the cytb tree with patterns for other genes is discussed in the light of three hypotheses: experimental contamination, hybridization, and pseudogenisation. However, none of these seem able to explain the patterns observed. A fourth hypothesis, involving recent horizontal gene transfer (HGT) between A. obtectus and A. obvelatus, and from one of these species to Z. subfasciatus in the Mexican Altiplano, seems the only plausible explanation. The HGT between our study species seems to have occurred recently, and only in a zone where the three beetles are sympatric and share common host plants. This suggests that transfer could have been effected by some external vector such as a eukaryotic or viral parasite, which might still host the transferred fragment. REVIEWERS: This article was reviewed by Eric Bapteste, Adam Eyre-Walker and Alexey Kondrashov
    • …
    corecore