79 research outputs found

    Dynamics of Salivary Gland AQP5 under Normal and Pathologic Conditions

    Get PDF
    Aquaporin 5 (AQP5) plays an important role in the salivary gland function. The mRNA and protein for AQP5 are expressed in the acini from embryonic days E13-16 and E17-18, respectively and for entire postnatal days. Ligation-reopening of main excretory duct induces changes in the AQP5 level which would give an insight for mechanism of regeneration/self-duplication of acinar cells. The AQP5 level in the submandibular gland (SMG) decreases by chorda tympani denervation (CTD) via activation autophagosome, suggesting that its level in the SMG under normal condition is maintained by parasympathetic nerve. Isoproterenol (IPR), a β-adrenergic agonist, raised the levels of membrane AQP5 protein and its mRNA in the parotid gland (PG), suggesting coupling of the AQP5 dynamic and amylase secretion-restoration cycle. In the PG, lipopolysaccharide (LPS) is shown to activate mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) signalings and potentially downregulate AQP5 expression via cross coupling of activator protein-1 (AP-1) and NF-κB. In most species, Ser-156 and Thr-259 of AQP5 are experimentally phosphorylated, which is enhanced by cAMP analogues and forskolin. cAMP-dependent phosphorylation of AQP5 does not seem to be markedly involved in regulation of its intracellular traffcking but seems to play a role in its constitutive expression and lateral diffusion in the cell membrane. Additionally, Ser-156 phosphorylation may be important for cancer development

    LPD after RHC for ascending colon cancer

    Get PDF
    Laparoscopic pancreaticoduodenectomy (LPD) has been widely adopted in institutions with sufficiently skilled practitioners. This technique requires attentive dissection around the superior mesenteric vein (SMV) and artery. Dissection around the SMV and Henle’s trunk is one of the key aspects of right hemicolectomy (RHC) ; adhesions and fibrosis around these vessels may impede LPD in patients with a history of RHC. We encountered three cases of periampullary tumors in patients with a history of RHC who were successfully treated with LPD. Cases 1, 2, and 3 were of 60-, 73-, and 74-year-old men with periampullary tumors. The operative durations in cases 1, 2, and 3 were 316, 267, and 265 min, respectively. The estimated blood loss volumes in cases 1, 2, and 3 were 20, 50, and 720 mL, respectively. The postoperative hospital stay durations in cases 1, 2, and 3 were of 13, 35, and 15 days, respectively. In conclusion, LPD following RHC may be safely completed with laparoscopy

    Inhibition of Casein Kinase 2 Modulates XBP1-GRP78 Arm of Unfolded Protein Responses in Cultured Glial Cells

    Get PDF
    Stress signals cause abnormal proteins to accumulate in the endoplasmic reticulum (ER). Such stress is known as ER stress, which has been suggested to be involved in neurodegenerative diseases, diabetes, obesity and cancer. ER stress activates the unfolded protein response (UPR) to reduce levels of abnormal proteins by inducing the production of chaperon proteins such as GRP78, and to attenuate translation through the phosphorylation of eIF2α. However, excessive stress leads to apoptosis by generating transcription factors such as CHOP. Casein kinase 2 (CK2) is a serine/threonine kinase involved in regulating neoplasia, cell survival and viral infections. In the present study, we investigated a possible linkage between CK2 and ER stress using mouse primary cultured glial cells. 4,5,6,7-tetrabromobenzotriazole (TBB), a CK2-specific inhibitor, attenuated ER stress-induced XBP-1 splicing and subsequent induction of GRP78 expression, but was ineffective against ER stress-induced eIF2α phosphorylation and CHOP expression. Similar results were obtained when endogenous CK2 expression was knocked-down by siRNA. Immunohistochemical analysis suggested that CK2 was present at the ER. These results indicate CK2 to be linked with UPR and to resist ER stress by activating the XBP-1-GRP78 arm of UPR

    Salivary gland development : its mediation by a subtilisinlike proprotein convertase, PACE4

    Get PDF
    The submandibular gland (SMG) develops under the epithelial-mesenchymal interaction. Its process is regulated by various growth/differentiation factors, which are synthesized as inactive precursors and activated via the limited proteolysis at their multi basic amino acid site(s) such as Arg-X-Lys/Arg-Arg. Although many of these processing steps are elucidated to be catalyzed by subtilisin-like proprotein convertases (SPCs), little is known about the role of SPCs in the SMG development. Here, we focused upon the physiological role of PACE4 (SPC4), a member of SPC family, in the SMG development. In the organ culture system of rat embryonic SMG (E15), Dec-RVKR-CMK, a potent inhibitor for SPCs, inhibited the salivary branching and the expression of an exocrine gland type water channel, AQP5. However, other peptidyl-CMKs and inhibitors for trypsin-like serine proteases including leupeptin did not affect the salivary branching and AQP5 expression. Dec-RVKR-CMK also suppressed the expression of PACE4, but not furin, another member of the family. The specific antibody for the catalytic domain of PACE4 suppressed the salivary branching and AQP5 expression similarly. These inhibitory effects of Dec-RVKR-CMK were partially rescued by the addition of recombinant BMP2 whose precursor is a candidate for the physiological substrates of PACE4. Further, the transcriptional silencing of PACE4 by its specific siRNAs caused the suppression of both the salivary branching and AQP5 expression in the present organ culture system. These observations strongly support the idea that PACE4 mediates the SMG development

    Down-regulation of submandibular gland AQP5 following parasympathetic denervation in rats

    Get PDF
    Following chorda tympani denervation (CTD, parasympathetomy), the protein levels of aquaporin5 (AQP5) as well as AQP1 and Na+K+ATPase α-subunit in the rat submandibular gland (SMG) were found to be decreased significantly. However, the level of another membrane protein, dipeptidyl peptidase IV was not affected by CTD, suggesting a selective reduction of AQP5, AQP1, and Na+K+ATPase1α-subunit proteins by CTD. However, the AQP5 mRNA level was scarcely affected by CTD, which suggested that transcription process of AQP5 was unaffected by this operation. AQP5 protein was shown to be degraded in vitro by the extract of the SMG obtained from normal rat ; inhibitor experiments in vitro suggested cathepsin B was a responsible enzyme. Co-localization of AQP5 and LAMP-2, a lysosomal marker, implicated AQP5 is degraded in lysosomes. A significant increase in the protein levels of LC3-II, an autophagy marker, at day 1 after CTD, and co-localization of the LC3 protein and AQP5, suggested that CTD activated autophagy of SMG, leading to AQP5 degradation

    Involvement of the IL-6/STAT3/Sca-1 system in proliferation of duct cells following duct ligation in the submandibular gland of mice

    Get PDF
    Ligation of the main excretory duct (MED) of the mouse submandibular gland (SMG) induced the expression of Sca-1, a stem cell marker. Sca-1 expression increased prominently in almost all of cells in the duct system, except the acinar cells. Sca-1 induction was accompanied with phosphorylated-STAT3 (Y705) elevation, which was localized in the nuclei of all duct cells. Electrophoretic mobility shift assay (EMSA) confirmed the specific binding of STAT3 to the GAS sequence, a biding site of gamma interferon activating site. Present study suggested one of the initial steps of the tissue regeneration after injury includes STAT3 pathway

    Trafficking of GFP-AQP5 chimeric proteins conferred with unphosphorylated amino acids at their PKA-target motif (152SRRTS) in MDCK-II cells

    Get PDF
    Three constructs having mutated PKA-target motif at 152SRRTS of AQP5, an exocrine type water channel, were prepared and fused to C-terminus of green fluorescence protein cDNA to examine the effects of blocking of phosphorylation at 152SRRTS (a consensus PKA-target motif of AQP5) on translocation or trafficking of the chimeric proteins expressed in the Madin-Darby canine kidney-II (MDCK-II) cells. H-89 treatment increased translocation of wild-type GFP-AQP5 to the apical membrane. All 3 mutant molecules translocated 1.5 to 2 times more than the control wild-type GFP-AQP5. Colchicine but not cytochalasin B inhibited the translocation of wild-type GFP-AQP5. Present results suggest dephosphorylation of this consensus sequence increase GFP-AQP5 translocation, and that microtubules but not microfilaments are involved in this event

    Induction of calprotectin mRNAs by lipopolysaccharide in the salivary gland of mice

    Get PDF
    Calprotectin is a major cytosolic calcium-binding protein of leukocytes which belongs to the S100 protein family. S100A8 and S100A9, major types of calprotectin are heterodimeric complexes being composed of light- and heavy-chain subunits. The calprotectin levels in the plasma, feces, synovial fluid, gingival crevicular fluid, dental calculus and saliva change when the host animal suffers from several inflammatory diseases. Members of Toll-like receptor (TLR) family are pattern-recognition receptors for lipopolysaccharide (LPS) and other pathogens. Here we examined if the biological role of TLR receptor is reflected to the calprotectin expression in the salivary gland. Time course study by using real-time RT-PCR detected higher levels of S100A8 and S100A9 mRNA at 1.5-3 h after injection of LPS in both the submandibular gland (SMG) and parotid gland (PG) of C3H/HeN mice but not in the same tissues of C3H/HeJ, a TLR-4 mutant strain, indicating that this induction is mediated via the TLR-4. These results indicate that, an inflammatory marker, calprotectin, is expressed in the mouse salivary gland and that LPS stimulated its synthesis. Calprotectin (S100A8/A9) showed minimum expression in all cellular segments in the SMG except excretory duct cells, which showed strong signal at the cytoplasm. LPS induced their expressions in the granular convoluted tubular cells and striated duct cells. In the PG, these proteins were expressed very weakly in both duct and acinar cells with a little stronger staining for the former cells. LPS injection induced calprotectin (S100A8/A9) in both duct and acinar cells especially in the former cells

    Effects of natural point mutation of rat aquaporin 5 expressed in vitro on its capacity of water permeability and membrane trafficking

    Get PDF
    In the colony of Sprague-Dawley (SD) strain, we found that there were rats expressing a mutant AQP5, which has a point mutation at nt 308 (G308A), leading to a replacement of 103Gly with 103Asp in the 3rd transmembrane domain. The mutant molecule scarcely expressed in the acinar cells, probably because of ineffective trafficking. The mutant molecule, however, showed normal water permeability when assessed by the oocyte system

    Annealing behavior of open spaces in AlON films studied by monoenergetic positron beams

    Get PDF
    The impact of nitridation on open spaces in thin AlONx films deposited by a reactive sputtering technique was studied by using monoenergetic positron beams. For AlONx films with x = 0%–15%, positrons were found to annihilate from trapped states in open spaces, which coexist intrinsically in an amorphous structure with three different sizes. Nitrogen incorporation into the Al2O3 film increased the size of the open spaces, and their density increased as the post-deposition annealing temperature increased. The effect of nitrogen incorporation, however, diminished at x = 25%. The observed change in the network structure was associated with the formation of a stable amorphous structure, which we could relate to the electrical properties of AlONx/SiO2/Si gate stacks
    • …
    corecore