

Annealing behavior of open spaces in AION films studied by monoenergetic positron beams

著者別名	上殿 明良
journal or	Applied physics letters
publication title	
volume	112
number	18
page range	182103
year	2018-04
権利	This article may be downloaded for personal
	use only. Any other use requires prior
	permission of the author and AIP Publishing.
	The following article appeared in Appl. Phys.
	Lett. 112, 182103 (2018) and may be found at
	https://doi.org/10.1063/1.5027257
URL	http://hdl.handle.net/2241/00153684

doi: 10.1063/1.5027257

Annealing behavior of open spaces in AION films studied by monoenergetic positron beams

Akira Uedono, Takahiro Yamada, Takuji Hosoi, Werner Egger, Tönjes Koschine, Christoph Hugenschmidt, Marcel Dickmann, and Heiji Watanabe

Citation: Appl. Phys. Lett. **112**, 182103 (2018); doi: 10.1063/1.5027257 View online: https://doi.org/10.1063/1.5027257 View Table of Contents: http://aip.scitation.org/toc/apl/112/18 Published by the American Institute of Physics

Articles you may be interested in

Correlation between dislocations and leakage current of p-n diodes on a free-standing GaN substrate Applied Physics Letters **112**, 182106 (2018); 10.1063/1.5024704

Polarization-induced hole doping in N-polar III-nitride LED grown by metalorganic chemical vapor deposition Applied Physics Letters **112**, 182104 (2018); 10.1063/1.5023521

Ultraviolet micro-Raman stress map of polycrystalline diamond grown selectively on silicon substrates using chemical vapor deposition Applied Physics Letters **112**, 181907 (2018); 10.1063/1.5027507

Vacancy-type defects in Al₂O₃/GaN structure probed by monoenergetic positron beams Journal of Applied Physics **123**, 155302 (2018); 10.1063/1.5026831

Integrating AllnN interlayers into InGaN/GaN multiple quantum wells for enhanced green emission Applied Physics Letters **112**, 201106 (2018); 10.1063/1.5028257

Large electron capture-cross-section of the major nonradiative recombination centers in Mg-doped GaN epilayers grown on a GaN substrate Applied Physics Letters **112**, 211901 (2018); 10.1063/1.5030645

Annealing behavior of open spaces in AION films studied by monoenergetic positron beams

Akira Uedono,¹ Takahiro Yamada,² Takuji Hosoi,² Werner Egger,³ Tönjes Koschine,³ Christoph Hugenschmidt,⁴ Marcel Dickmann,⁴ and Heiji Watanabe²

¹Division of Applied Physics, Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan

²Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan

³Institut für Angewandte Physik und Messtechnik, Universität der Bundeswehr München, 85577 Neubiberg, Germany

⁴Physics Department E21 and Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, 85748 Garching, Germany

(Received 28 February 2018; accepted 18 April 2018; published online 3 May 2018)

The impact of nitridation on open spaces in thin AlON_x films deposited by a reactive sputtering technique was studied by using monoenergetic positron beams. For AlON_x films with x = 0%-15%, positrons were found to annihilate from trapped states in open spaces, which coexist intrinsically in an amorphous structure with three different sizes. Nitrogen incorporation into the Al₂O₃ film increased the size of the open spaces, and their density increased as the post-deposition annealing temperature increased. The effect of nitrogen incorporation, however, diminished at x = 25%. The observed change in the network structure was associated with the formation of a stable amorphous structure, which we could relate to the electrical properties of AlON_x/SiO₂/Si gate stacks. *Published by AIP Publishing*. https://doi.org/10.1063/1.5027257

Aluminum oxide (Al₂O₃) has been extensively studied for the application as gate insulators of metal-oxide-semiconductor field-effect transistors (MOSFETs) because of its beneficial physical properties such as a large dielectric constant, large bandgap, and good adhesion.¹ In particular, Al₂O₃ is an ideal insulator for wide-gap semiconductors due to an appropriate band offset at the insulator/semiconductor interface.² Compared with conventional gate oxides, such as SiO₂ and SiON, however, the amorphous Al₂O₃ film tends to crystallize after annealing treatments (≅800 °C).^{1,3} This is one of the major concerns for Al₂O₃ gate insulators because grain boundaries act as a leakage path between semiconductors and electrodes. Another concern is the presence of high density fixed charges in the Al₂O₃ film and/or the Al₂O₃/ semiconductor interface. It was reported that nitrogen incorporation into Al₂O₃ improves the electrical properties of MOSFETs.⁴⁻⁶ Although the benefits of nitridation are clear, only limited information is available regarding the effects of nitrogen incorporation on the matrix structure of amorphous Al₂O₃, which could affect the dielectric constant and electrical properties on gate stacks. Positron annihilation is an established technique for investigating vacancy-type defects and open spaces in crystalline and amorphous materials.^{7,8} In the present study, we used this technique to study the effect of nitridation on open spaces in amorphous Al₂O₃ films.

The substrate used in this study was Si(100) wafer, on which SiO₂ films (8 nm thick) were grown by thermal oxidation. 10 nm thick AlON_x (x = 0%-25%) films were deposited on the SiO₂/Si template at room temperature by using a reactive sputtering technique with an Al target. Details on the deposition conditions are given elsewhere.^{5,9} AlON_x and Al₂O₃ depositions were performed in N₂/O₂ and Ar/O₂ gas mixtures, respectively. The AlON_x films with different nitrogen contents were prepared by controlling O₂ partial pressure

during the deposition. After the deposition, they were annealed at temperature ranging from 600 °C to 900 °C for 3 min in the N₂ atmosphere. The nitrogen content in the AlON_x film was estimated by x-ray photoelectron spectroscopy (PHI Quantera SXM, ULVAC-PHI). For electrical measurements, circular Ni gate electrodes with 100 μ m diameter and Al back contacts were formed by vacuum evaporation to fabricate AlON_x/SiO₂/ Si MOS capacitors. The *C-V* characteristics were measured at a frequency of 1 MHz using an Agilent B1500A semiconductor device parameter analyzer. The flat-band voltage, V_{fb}, was estimated using the calculated flat-band capacitance.

Details on the positron annihilation technique are given elsewhere.^{7,8} In the present experiments, the Doppler broadening spectra of the annihilation radiation were measured with a Ge detector as a function of the incident positron energy E. The energy resolution of the detector was $1.2 \,\text{keV}$ (full width at half maximum, FWHM), and the counting rate was about 1000 s⁻¹. The spectra were characterized by the S parameter, defined as the fraction of annihilation events in the energy range of 510.24-511.76 keV. The relationship between S and E was analyzed by VEPFIT, a computer program developed by van Veen et al.¹⁰ The positron lifetime spectrum was measured by using a pulsed monoenergetic positron beam at the NEPOMUC positron source of the Technische Universität München.¹¹ The lifetime spectrum $S_{LT}(t)$ is given by $S_{LT}(t) = \Sigma (1/\tau_i) I_i \exp(-t/\tau_i)$, where τ_i and I_i are the positron lifetime and intensity of the *i*-th component, respectively ($\Sigma I_i = 1$). Approximately 4×10^6 counts were accumulated in each spectrum, and the spectra were analyzed with a time resolution of about 200 ps (FWHM) by using the RESOLUTION computer program.¹²

Figure 1 shows the annealing behaviors of $V_{\rm fb}$ for the AlON_x/SiO₂/Si samples with x = 0%, 7%, and 25%. The $V_{\rm fb}$ value was determined from multiple measurements for each

FIG. 1. Flat band voltage $V_{\rm fb}$ for AlON_x/SiO₂/Si (x = 0%, 7%, and 25%) as a function of annealing temperature. The result for the SiO₂/Si template is also shown.

sample, and its variation was less than ± 0.05 V. For the SiO₂/Si template, the value of $V_{\rm fb}$ kept almost positive (0–0.6 V), and the $V_{\rm fb}$ shift was small compared with that for AlON_x/SiO₂/Si. The change in the threshold voltage, $V_{\rm th}$, for high-k/metal gate has been explained by the formation of electric dipoles at the high-k/SiO₂ interface.^{13,14} For Al₂O₃/SiO₂/Si, it is known that the $V_{\rm th}$ shift due to the dipoles is positive and that the $V_{\rm th}$ value is stable before and after annealing treatment. Negative charges introduced in AlON_x or at the AlON_x/SiO₂ interface could also cause the positive shift of $V_{\rm fb}$. The $V_{\rm fb}$ values for AlON_x were smaller than those for the sample without nitridation, suggesting that the nitrogen incorporation suppressed the introduction of electric dipoles and/or negative charges.

Figure 2 shows the *S* values for AlON_{0.07}/SiO₂/Si before and after annealing as a function of *E*. The statistical error of the *S* value is smaller than the size of symbols in the figure. For the as-deposited samples, the *S* value increases as *E* increases, and it saturates above E = 10 keV. The saturated value coincides with the *S* value for the Si substrate (0.531), indicating that almost all positrons annihilated in the Si substrate in this energy range. The mean implantation depth of positrons at E = 1 keV corresponds to the depth of the AlON_{0.07}/SiO₂ interface in AlON_{0.07}/SiO₂/Si and to the SiO₂/Si interface in the template. Therefore, the observed decrease in the *S* value at a low *E* can be attributed to the annihilation of positrons in the AlON_{0.07} film and/or the SiO₂ films.

For AlON_{0.07}/SiO₂/Si after annealing, the S values above E = 1 keV were smaller than those for the as-deposited samples. The diffusion of positrons is affected by the electric field in the depletion region in the Si substrate. The observed decrease in the S value, therefore, indicates the enhanced diffusion of positrons toward the insulators due to the band bending in Si. This fact agrees well with the $V_{\rm fb}$ shift shown in Fig. 1. The obtained S-E curves were analyzed by using the VEPFIT code, and the solid curves in Fig. 2 are fits to the experimental data. In the fitting, the region sampled by positrons was divided into four blocks. Here, the first and second blocks correspond to the annihilation of positrons in the AlON_{0.07} film, and the third and fourth blocks correspond to the annihilation of positrons in the SiO₂ film and Si substrate, respectively. From the fitting results, it is concluded that the S value at $E \cong 0.5 \text{ keV}$ can be attributed to the annihilation of positrons in the AlON $_{0.07}$ film.

The annealing behaviors of S for $AION_x$ with x = 0% - 25% are summarized in Fig. 3, where the S value was averaged by using S measured at E = 0.4-0.5 keV. The error bar is close to the size of the symbol. The S value for crystalline Al_2O_3 was 0.415. Thus, the large S value shown in Fig. 3 indicates the annihilation of positrons trapped by open spaces in the AlON_r film. The S value increases with the increasing size of open spaces and/or their concentrations. Thus, the change in S can be associated with the change in a weighted average size of open spaces. For the samples with the $AION_x$ film (x > 3%), the S value increases as the annealing temperature increases, which can be attributed to the increase in the average size of open spaces. For the AlO film (x = 0%), however, the S value starts to decrease above 800 °C annealing, which can be attributed to the shrinkage of the average size of open spaces. These facts indicate that nitrogen incorporation into the AlO film suppresses the shrinkage of open spaces above 800 °C annealing. For AlON_{0.25} after annealing above $800 \,^{\circ}$ C, however, the S values are smaller than those for AlON_x with x = 3% - 15%, indicating that the effect of nitrogen incorporation on open spaces diminishes at x = 25%.

FIG. 2. *S* parameters as a function of incident positron energy *E* for AlON_{0.07}/SiO₂/Si samples before and after annealing [(a) E = 0.1-20.0 keV and (b) E = 0.1-4.0 keV]. The result for the SiO₂/Si sample without annealing is also shown.

FIG. 3. *S* parameter as a function of annealing temperature of AlON_x films (x = 0%-25%). The results for as-deposited samples are also shown.

For AlON_x (x = 0%, 7%, and 25%) before and after annealing at 900 °C, the lifetime spectra of positrons were measured at E = 0.5 keV. The spectra were decomposed into three components, and the obtained lifetimes and corresponding intensities are shown in Fig. 4. The error bars of those parameters are close to or smaller than the size of symbol in the figure. The third lifetime (τ_3) indicates the formation of positronium (Ps: a hydrogen-like bound state between a positron and an electron) in AlON_x. The τ_3 value varied from 2.8 to 4.9 ns. According to the relationship between the Ps lifetime and the size of open spaces (or free volume) used for amorphous polymers,⁸ the diameters corresponding to this range can be estimated to be 0.7–0.9 nm. The lifetime of

FIG. 4. (a) Positron lifetimes (τ_1 , τ_2 , and τ_3) and (b) corresponding intensities (I_1 , I_2 , and I_3) for AlON_x films before and after annealing at 900 °C. Lifetime spectra were measured at E = 0.5 keV.

positrons annihilated from the free state in crystalline Al₂O₃ was 143 ps.¹⁵ Because the first and second positron lifetimes $(\tau_1 \text{ and } \tau_2)$ are longer than this value, they can be associated with the annihilation of positrons trapped by open spaces which are smaller than the ones detected by the third component. Thus, one can conclude that open spaces with three different sizes coexist in the as-deposited $AION_x$ film, and this is still true for the films annealed up to 900°C. Kimoto et al.¹⁶ reported that atomic coordinates of the thin Al_2O_3 film deposited by atomic layer deposition were close to those of γ -Al₂O₃. Consequently, Uedono *et al.*¹⁷ simulated the positron lifetimes in γ -Al₂O₃. In a spinel-like γ -Al₂O₃ structure, since eight Al vacancies $(V_{Al}s)$ exist in three spinel unit cells to satisfy stoichiometry, Al atoms were removed from the super cell using random numbers in the simulation. The positron lifetime was obtained in the range between 0.22 ns and 0.26 ns. Here, the lifetime distribution reflects the size variation of open spaces. For example, when positrons are mainly localized in the open space consisting of three V_{Al} s, the lifetime was obtained as 0.245 ns. This lifetime is close to τ_1 for AlO after 900 °C annealing, indicating that the size of open space detected by the first component is close to that of such a vacancy agglomerate.

The τ_2 value increased as x increased, indicating that the nitrogen incorporation increased the size of the mediumsized open space in the amorphous network. For the AlON_x films with x = 7% and 25%, the I_2 values increase after annealing, and the intensity of the short-lived component (I_1) decreases. This behavior is consistent with the observed increase in the S value after annealing for $AION_x$ (Fig. 3). For the AlO film, however, the change in the intensities is small, and the values of τ_1 and τ_3 decrease after annealing. These facts indicate that the nitrogen incorporation suppressed the shrinkage of open space after annealing. For as-deposited AlON_x with x = 7% and 25%, however, the I_2 values are smaller than those for AlO, indicating that annealing treatment done at the appropriate temperature is indispensable for nitrogen incorporation to affect the network structure of the film.

Using the positron annihilation technique and x-ray photoelectron spectroscopy (XPS), Uedono et al.¹⁸ reported the effect of nitrogen incorporation in 5 nm-thick $HfSiON_x$ films deposited on Si substrates. They reported that the average size of open spaces increased as x increased, and this is mainly due to the increase in the density of Si-N bonds. From the measurements of XPS for AlON_x (x = 11% - 41%) deposited on SiC, Takeuchi et al.⁶ reported that the density of Al-N bonds increased but that the density of Al-NO₂ decreased as the N content increased. In the present experiment, therefore, the formation of Al-N bonds was likely to increase the τ_2 value. The nitrogen incorporation and the resultant increase in the average size of open spaces are thought to be related to the stabilization of the amorphous structure, which suppresses the crystallization of the AlO film. From this point of view, an appropriate x value can be determined to be 3%-15%(Fig. 3). Because the nitrogen incorporation effect is strongly affected by the post-annealing temperature, both the nitrogen content and annealing temperature are important process parameters for optimizing the deposition conditions of the $AION_x$ gate insulator.

We used monoenergetic positron beams to characterize AlON_x films deposited on the SiO₂/Si stack by using a reactive sputtering technique. Open spaces with three different sizes were detected in the AlON_x film, and the volume of medium-sized open spaces was increased by the nitrogen incorporation. After the annealing treatment, the density of the medium-sized open spaces increased for AlON_x. The observed increase in the density and size of open spaces was associated with the formation of a stable amorphous structure. The present work indicates that positron annihilation parameters are sensitive to the network structure in the thin AlON_x film, and it can provide useful information for process optimization for devices with AlON_x insulators.

This work was supported by the Cross-ministerial Strategic Innovation Promotion Program (SIP), "Next-generation power electronics" (funding agency: NEDO). A part of this work was also supported by JSPS KAKENHI (Grant No. 16H06424).

- ⁵R. Asahara, M. Nozaki, T. Yamada, J. Ito, S. Nakazawa, M. Ishida, T. Ueda, A. Yoshigoe, T. Hosoi, T. Shimura, and H. Watanabe, Appl. Phys. Express 9, 101002 (2016).
- ⁶W. Takeuchi, K. Yamamoto, M. Sakashita, O. Nakatsuka, and S. Zaima, Jpn. J. Appl. Phys. **57**, 01AE06 (2018).
- ⁷R. Krause-Rehberg and H. S. Leipner, *Positron Annihilation in Semiconductors, Solid-State Sciences* (Springer-Verlag, Berlin, 1999), Vol. 127.
- ⁸Principle and Application of Positron and Positronium Chemistry, edited by Y. C. Jean and D. M. Schrader (World Scientific, Singapore, 2003), p. 167.
- ⁹K. Watanabe, M. Nozaki, T. Yamada, S. Nakazawa, Y. Anda, M. Ishida, T. Ueda, A. Yoshigoe, T. Hosoi, T. Shimura, and H. Watanabe, Appl.
- Phys. Lett. 111, 042102 (2017).
 ¹⁰A. van Veen, H. Schut, M. Clement, J. M. M. de Nijs, A. Kruseman, and
- M. R. IJpma, Appl. Surf. Sci. 85, 216 (1995).
- ¹¹P. Sperr, W. Egger, G. Kögel, G. Dollinger, C. Hugenschmidt, R. Repper, and C. Piochacz, Appl. Surf. Sci. 255, 35 (2008).
- ¹²P. Kirkegaard, M. Eldrup, O. E. Mogensen, and N. J. Pedersen, Comput. Phys. Commun. 23, 307 (1981).
- ¹³K. Iwamoto, Y. Kamimuta, A. Ogawa, Y. Watanabe, S. Migita, W. Mizubayashi, Y. Morita, M. Takahashi, H. Ota, T. Nabatame, and A. Toriumi, Appl. Phys. Lett. **92**, 132907 (2008).
- ¹⁴K. Kita and A. Toriumi, Appl. Phys. Lett. **94**, 132902 (2009).
- ¹⁵A. Uedono, K. Ikeuchi, K. Yamabe, T. Ohdaira, M. Muramatsu, R. Suzuki, A. S. Hamid, T. Chikyow, K. Torii, and K. Yamada, J. Appl. Phys. **98**, 023506 (2005).
- ¹⁶K. Kimoto, Y. Matsui, T. Nabatame, T. Yasuda, T. Mizoguchi, I. Tanaka, and A. Toriumi, Appl. Phys. Lett. 83, 4306 (2003).
- ¹⁷A. Uedono, T. Nabatame, W. Egger, T. Koschine, C. Hugenschmidt, M. Dickmann, M. Sumiya, and S. Ishibashi, J. Appl. Phys. **123**, 155302 (2018).
- ¹⁸A. Uedono, K. Ikeuchi, T. Otsuka, K. Shiraishi, S. Miyazaki, N. Umezawa, A. Hamid, T. Chikyow, T. Ohdaira, M. Muramatsu, R. Suzuki, S. Inumiya, S. Kamiyama, Y. Akasaka, Y. Nara, and K. Yamada, J. Appl. Phys. **99**, 054507 (2006).

¹J. Robertson, Eur. Phys. J.: Appl. Phys. 28, 265 (2004).

²M. D. Groner, J. W. Elam, F. H. Fabreguette, and S. M. George, Thin Solid Films **413**, 186 (2002).

³K. Manabe, K. Endo, S. Kamiyama, T. Iwamoto, T. Ogura, N. Ikarashi, T. Yamamoto, and T. Tatsumi, IEICE Trans. Electron. **E87-C**, 30 (2004).

⁴Y. Hori, C. Mizue, and T. Hashizume, Jpn. J. Appl. Phys. **49**, 080201 (2010).