177 research outputs found
A columnar model explaining long-term memory
A hologram provides a useful model for explaining the associative memory of the brain. Recent advances in neuroscience emphasize that single neurons can store complex information and that subtle changes in neurons underlie the process of memorization. Experimental results suggest that memory has a localized character. This finding is inconsistent with the characteristics of holographic memory, because this memory has a delocalized, uniform distribution of refractive index in the recorded medium. The recently proposed columnar memory model has a discrete distribution of refractive index. In this study, we first examined the performance of columnar memory and found that it was comparable to holographic memory. Secondly, we showed that this model could explain the above-mentioned experimental results as well as associative memory
Repeated Coordination with Private Learning
We study a repeated game with payoff externalities and observable actions where two players receive information over time about an underlying payoff-relevant state, and strategically coordinate their actions. Players learn about the true state from private signals, as well as the actions of others. They commonly learn the true state (Cripps et al., 2008), but do not coordinate in every equilibrium. We show that there exist stable equilibria in which players can overcome unfavorable signal realizations and eventually coordinate on the correct action, for any discount factor. For high discount factors, we show that in addition players can also achieve efficient payoffs
Verifying the validity and reliability of the Japanese version of the Face, Legs, Activity, Cry, Consolability (FLACC) Behavioral Scale
BackgroundPediatric patients, especially in the preverbal stage, cannot self-report intensity of pain therefore several validated observational tools, including the Face, Legs, Activity, Cry, Consolability (FLACC) Behavioral Scale, have been used as a benchmark to evaluate pediatric pain. Unfortunately, this scale is currently unavailable in Japanese, precluding its widespread use in Japanese hospitals.ObjectivesTo translate and verify the validity and reliability of the Japanese version of the FLACC Behavioral Scale.MethodBack-translation was first conducted by eight medical researchers, then an available sample of patients at the University of Tsukuba Pediatric Intensive Care Unit (from May 2017 to August 2017) was enrolled in a clinical study. Two researchers evaluated the validity of the translated FLACC Behavioral Scale by weighted kappa coefficient and intraclass correlation coefficients (ICC). Observational pain was simultaneously measured by the visual analog scale (VAS obs) and reliability was evaluated by correlation analysis.ResultThe original author approved the translation. For the clinical study, a total of 121 observations were obtained from 24 pediatric patients. Agreement between observers was highly correlated for each of the FLACC categories (Face: κ = 0.85, Leg: κ = 0.74, Activity: κ = 0.89, Cry: κ = 0.93, Consolability: κ = 0.93) as well as the total score (Total: κ = 0.95,). Correlation analysis demonstrated a good criterion validation between the FLACC scale and the VAS obs. (r = 0.96)ConclusionOur Japanese version of the FLACC Behavioral Scale shows high validity and reliability
Effects of Aquatic Pole Walking on the Reduction of Spastic Hypertonia in a Patient with Hemiplegia: A Case Study
Here we report an acute effect of aquatic pole walking (PW) training intervention on a 64-year-old male patient with chronic hemiparesis and symptoms of spasticity in the right lower limb. A comparison of over ground walking before and after 20 minutes of aquatic PW training revealed a significant improvement in gait performance. As a main result, the average speed of walking after the intervention was 0.16 m/s after the intervention as compared to 0.04 m/s in the initial condition. The time taken for each stride cycle was drastically decreased, mainly due to shortening of the stance time. Underlying the improved gait performance was the emergence of functional muscle activity in the paralyzed and spastic leg muscles. The result observed in this patient should be further tested among a large population of patients presenting similar symptoms. Moreover, the basic mechanisms underlying aquatic PW intervention should be further elucidated
Cross-sectional particle measurement in the resonance domain on the substrate through scatterometry
We developed a versatile method for three-dimensional shape measurement where a specific particle can be selected on the substrate and its cross-sectional shape and size can be measured. A non-contact fast measurement is possible for the particle in the resonance domain. We applied rigorous coupled-wave analysis to the particle and calculated the diffraction patterns, comparing the patterns with the experimental results to obtain the size and shape. The shape and position of the focusing spot on the scattering particle was controlled precisely. With this method, the category of the analyzable object is extended to more shapes, such as rectangles and triangles, in addition to a conventional ellipsoid
Rapid-onset dystonia-Parkinsonism phenotype consistency for a novel variant of ATP1A3 in patients across 3 global populations
info:eu-repo/semantics/publishedVersio
Abnormal axon guidance signals and reduced interhemispheric connection via anterior commissure in neonates of marmoset ASD model
In autism spectrum disorder (ASD), disrupted functional and structural connectivity in the social brain has been suggested as the core biological mechanism underlying the social recognition deficits of this neurodevelopmental disorder. In this study, we aimed to identify genetic and neurostructural abnormalities at birth in a non-human primate model of ASD, the common marmoset with maternal exposure to valproic acid (VPA), which has been reported to display social recognition deficit in adulthood. Using a comprehensive gene expression analysis, we found that 20 genes were significantly downregulated in VPA-exposed neonates. Of these, Frizzled3 (FZD3) and PIK3CA were identified in an axon guidance signaling pathway. FZD3 is essential for the normal development of the anterior commissure (AC) and corpus callosum (CC); hence, we performed diffusion tensor magnetic resonance imaging with a 7-Tesla scanner to measure the midsagittal sizes of these structures. We found that the AC size in VPA-exposed neonates was significantly smaller than that in age-matched controls, while the CC size did not differ. These results suggest that downregulation of the genes related to axon guidance and decreased AC size in neonatal primates may be linked to social brain dysfunctions that can happen later in life
- …