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Abstract— A hologram provides a useful model for explaining the associative memory of the 

brain. Recent advances in neuroscience emphasize that single neurons can store complex 

information and that subtle changes in neurons underlie the process of memorization. 

Experimental results suggest that memory has a localized character. This finding is inconsistent 

with the characteristics of holographic memory, because this memory has a delocalized, uniform 

distribution of refractive index in the recorded medium. The recently proposed columnar memory 

model has a discrete distribution of refractive index. In this study, we first examined the 

performance of columnar memory and found that it was comparable to holographic memory. 

Secondly, we showed that this model could explain the above-mentioned experimental results as 

well as associative memory. 
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1. INTRODUCTION  

The number of transistors of the von Neumann-type supercomputer exceeds 10 billion [1]. 

On the contrary, the number of neurons that make up the human brain is between 50 and 100 

billion [2, 3], of which 10 billion belong to the cerebral cortex [4, 5]. This number is too low 

to explain the brain’s high performance capacity if each individual neuron is assumed to 

correspond to 1 bit, that is, ON/OFF. The human brain is superior to the supercomputer and 

has wide performance potential [6]. The brain is likely to work on a different scheme from 

conventional computers. Studies of the human brain may be useful to guide the development 

of a next-generation computer. Although many neural models of human memory have been 

presented [7-11], we do not completely understand the mechanism of brain memory yet [12], 

in part because most research focuses on the local connections between neurons. We believe 

that a comprehensive theory of the brain’s memory mechanisms would be useful and that a 

model should relate neurons directly to memory in order to explain these mechanisms. If such 

a model is concrete and valid, we can then apply the model for conducting experiments on 

the actual brain. Further, the results of these experiments can provide feedback to refine the 

model. 

The holographic memory model is one of the few models that directly and concretely 



combine neurons with contents of memory. Although brain signals are produced by a 

complex branch of neurons [13], the holographic model suggests that the basic unit of 

memory is the periodic structure. Actually, the shape of the cat striate cortex (V1) is 

represented by a sinusoidal wave, and this is important for signal processing in the brain [14]. 

However, we noticed that the holographic memory model could not explain 2 common 

experimental results. First, single neurons can store complex information [15], and second, 

subtle changes in neurons underlie the process of memorization [16]. To address these 

discrepancies, we present a new model that combines columnar memory [17] and 

holographic memory. Columnar memory can have various sizes and a complex shape. 

Furthermore, we estimated the relative performance of the columnar and holographic 

memory models, because the theoretical limits of memory densities have not yet been 

compared. 

 

2. THE PRINCIPLE OF LONG-TERM MEMORY IN THE BRAIN 

The human brain has both short-term memory, lasting several minutes, and long-term 

memory, lasting decades [18-21]. The signal for memory used in the brain is a pulse train of 

electrical potentials with an average period in the order of microseconds [22, 23]. These 

electric potentials can have an interference pattern, as can electric fields [24]. Previous 

studies have investigated the mechanism responsible for the maintenance of a mammal’s 



memory for decades [19, 20]; these studies have shown that the lifetime of a signal based on 

electrical potential is not enough to explain the maintenance of long-term memory [19]. 

Another model to explain memory is the quantum memory model [25]. There is some 

discussion as to whether the brain works as a quantum computer or not [26, 27]. Can 

quantum memory explain long-term memory? The brain has abundant nuclear spin of protons, 

but the lifetime of this spin is as small as several hundred milliseconds [28], even under a 

strong magnetic field. Electronic spin is also a candidate mechanism for memory but has a 

shorter life than nuclear spin [29, 30]. 

As mentioned above, the lifetime of electric signals or the spin state is not enough to 

account for the maintenance of long-term memory. The change in the shape of a plastic 

neuron [16, 31] has the possibility to last a long time, as it does not require extra energy to 

maintain its state. This is, therefore, promising as an explanation of long-term memory. The 

distribution of refractive index in the recording medium can underlie the working of a model 

of long-term memory. 

 

3. CHARACTERISTICS OF HOLOGRAPHIC MEMORY 

As a memory model of refractive index, holographic memory is the most popular 

high-density memory model. It has been attracting attention in the field of recording since it 

is appropriate for explaining associative [32-34] and delocalized memory; these 



characteristics are similar to those of the human brain [24, 34-36]. It has a conventional 

coding method in itself and has a correspondent concrete memory system [32, 37, 38]. It does 

not need a transistor to perform the calculation, but needs optical elements such as lens and 

photosensitive polymer [39, 40]. Hologram information is a Fourier-transformed picture, with 

its refractive index distribution spreading over a record layer. For example, the associative 

memory of “goldfish” may be made of many aspects like, face, body, red, etc. All of these are 

present in the space domain and are Fourier transformed into the frequency domain [33, 34] 

for recording them to the same area. If one of the aspects such as the fish face is projected to 

the recording area, the other aspects regenerate [34]. This is the function of the associative 

memory of a hologram. 

The distribution of refractive index in a microscopic area is optically Fourier transformed 

by scattering [41]. This effect is available for the light computing of addition and subtraction 

[40, 42, 43]. Because holographic memory works by light, it can perform parallel information 

processing differently from the information processing of a transistor circuit [39]. 

However, holograms differ from the brain in the following 3 points. Firstly, in the brain, 

single neurons appear to be related to complex memory [15], but the information of 

holographic memory is dispersed into the record layer uniformly. Secondly, the distribution 

of a neuron is discrete [24, 44], but holographic memory is continuous. Moreover, the 

distribution of electrical potential in a neuron is important for information processing [24]. 



The distribution of the electric potential changes periodically in the column, as the 

distribution of the electrical field does [24, 45]. The shape of the scatterer (neuron) should 

affect the electric field largely. If the continuous data of a hologram is represented by discrete 

neurons, the distances between the neurons should be the same so that Fourier transformation 

(FT) of the data is easy. Thirdly, the distribution of the refractive index of holographic 

memory should be changed drastically by memorizing [46], but the change in neurons 

induced by memorizing is subtle [16]. Let us think of 2 slits as a memorized picture. They are 

represented holographically as Eq. (1) [47], where “A” is a constant, “d” is the distance 

between the slits, is the scattering angle in Fig. 1,  is the wavelength, and ( ) f d  gives 

the light intensity distribution. 

  2( )  2 1 cos 2  sin( ) / .f d A d   
 

  (1) 

When sin( )  changes, the distribution becomes like the hologram of Fig. 2. The subtle 

change in the distance between the 2 slits alters the hologram a lot. 

The above 3 points may not be problematic if the hologram’s information is presented by 

electric signals or distribution of ions, but these memories do not last decades or years. 

 

4. THE STRUCTURE OF THE HUMAN BRAIN AND ITS MEMORY MODEL 



Despite all the above-mentioned studies, the relationship between memory and the neuron 

is not clear. The main problem is the ambiguous localization of memory. Hologram is a 

candidate memory model, but it has the problems described above. 

Here, we focus on the structure of the neurons with regards to memory [2].The diameter of 

a neuron in the brain is several μm [44], which is 100 times thicker than a wire of a transistor. 

Neurons seem to be unsuitable for storage of high-density memory, but the system of 

multivalued memory may resolve this problem. For example, using the small change in 

distance as information, the amount of information in 1 distance might be 10 times more than 

that in a 1-bit type memory of a neuron. 

Human memory has the following 2 structural characteristics. 

(1) The sizes and shapes of neurons are categorized into 4 types only [16, 44].  

(2) The shape changes induced by memorization are subtle [16]. 

The neuron itself does not hold the shape of the picture, necessarily. The information may 

be encoded into different information [48]. As the electric signal in neurons consists of pulse 

trains [2], the coding can be performed by electric signals. Moreover, the signal from long 

distance neurons is amplified [16]. This suggests 2 mechanisms; that distances between 

neurons can provide information and that the information travels long distances. The shape of 

neurons is complex and columnar. This complex shape can affect the electrical potential 

within the neuron. It seems unsuitable for an element of optical memory. In order to realize 



optical memory with similar structures and signals to those in the brain, the following may be 

required. 

(1) The distance between columns (neurons) and shape of the columns provides information. 

(2) To increase the information capacity, the precision of distance is high. 

The problem is the method to measure the distance precisely. 

 

5. ARRAY OF COLUMNS FOR HIGH-DENSITY MEMORY 

Itoh et al. proposed the model of memory shown in Fig. 1a [17]. This model has the 

following characteristics.  

(1) The shape of the scatterer is columnar.  

(2) The information is encoded in the distance between a specific scatterer and the others.  

This memory is a multivalued memory, whose information is distance. Because the shape 

is columnar, and we can consider the change of scattering according to the shape and size of 

the column, memory can reflect the subtle changes in the column. The electrical field in the 

column is periodic, and the position of the node affects the scattering character [45]. We 

think of the specific scatterer as the original point. The distance from the original point to 

other scatterers encodes information. 



If 1 neuron, which works as the original point, is related to many other neurons, it can 

store complex data. Actually, single neurons of the human brain have the potential to 

represent complex information such as one’s grandmother’s face [49]. 

This memory is realized if we can measure the distance rapidly and precisely from the 

scattering pattern. Conventionally, it has been difficult to rigorously calculate the scattering 

intensity of isolated scatterers other than spheroid scatterers [50, 51]. Rigorous coupled wave 

analysis (RCWA) is one of the most rigorous calculation algorithms for scattering intensity, 

but the calculations are generally limited to periodic scatterers [52]. Therefore, Itoh et al. 

developed a new simple method to apply RCWA to an isolated system [17]. This method 

enables the calculation of distance by a one-time FT of the distribution of scattering and some 

correction for the shape of scatterers by RCWA. Moreover, it can utilize the effects of size 

and shape to extract specific distance information [17]. If the sizes and shapes of columnar 

scatterers are similar, and the distance between scatters ranges from 1 to several 10 

wavelengths, the scattering distribution is approximately calculated by FT of the image, and 

the abovementioned optical memory is possible. Now, we know that the scattering 

distribution of the columnar memory can be treated as holographic memory, because 

holographic memory and a picture are converted into each other by FT. 

If the refractive index distribution does not include information about orientation, then 

information about the arrangement of the original scatterers cannot be extracted by FT and 



analyses of the scattering of recorded information of refractive index distribution. Not only 

columnar memory, but also holographic memory utilizes FT and obtains information about 

orientation by using 2 lights with different vectors. The reconstructed image of a hologram 

has directional information in itself and seems to have the same three-dimensional structure 

as the original image [53]. In contrast, the columnar memory system measures the distance 

from a specific scatterer to the others, using interference between scatterers. Complete 

information regarding the direction is given when the marked scatterer is located on the edge 

of the scatterers, because a marked scatterer located at the center of the scatterers cannot be 

used to differentiate between 2 scatterers in opposite directions from each other. The specific 

scatterer is marked by enhancing the scattering light. It causes the light of the first vector, and 

the other scatterers cause the light of the second vector. 

Figure 1 shows an example of the calculation using this type of memory model. The 

distance from rectangle 1 to rectangles 2, 3, and 4 is 3, 4, and 5, in this order in Fig. 1a, when 

wavelength is 1. The projection of a small image has the effect of FT [41], and the 

Fourier-transformed image is projected onto the screen. We can obtain the distance by a 

one-time FT of the distribution on the screen, and the correction can be performed by RCWA. 

The data has an almost periodic distribution against sin ( ) , when there are 2 scatterers [17]. 

Here  is the scattering angle, and is defined in Fig. 1a. 



To calculate scattering with directional information, a large left scatterer was added. It has 

a strong scattering intensity, because the scattering intensity increases as the scatterer 

becomes larger [17]. The result of FT is shown in Fig. 1b. We introduced a new parameter, 

wcalc and set the horizontal axis as wcalc divided by wavelength . The result marked by 

arrows indicates 3, 4, and 5 in the horizontal axis, and these are the distances between the 

scatterers shown in Fig. 1a [17]. In this way, the distances from a left scatterer with a large 

diffraction intensity to the other scatterers are selectively determined. 

 

6. HOLOGRAPHIC AND COLUMNAR MEMORY 

Holograms records information, into which the original image is already Fourier 

transformed. For example, a goldfish with its face and body is recorded to the same area as 

the Fourier-transformed form, as depicted in Fig. 3a. When the picture of the face is projected 

to the hologram, the body of the goldfish appears, as shown in Fig. 3b. Gabor regenerated the 

original data in scattering light, using the FT effect of scattering [34]. In contrast, columnar 

memory records original information itself, as shown in Fig. 4a, and the original data is 

restored by FT of the distribution of the scattering light. The original point has a stronger 

scattering intensity than the others. To recall the goldfish, Fig. 4a is projected into the 

temporal memory, and the temporal memory is projected to the region for recognition again. 



How does columnar memory represent the goldfish and associative memory? In Figs. 3 

and 4, we set the face of goldfish, body, and the original point as A(x, y), B(x, y), and C(x, y) 

in this order in the Cartesian coordinates for the electric field in the plane of the hologram. In 

holographic memory, when A and B are projected to the plane, the amplitude is |A + B|2. If A 

is projected to it, B regenerates [34]. When A, B, and C are projected to the plane, the 

amplitude is |A + B + C|2. We assume that |C|2 is constant C0 and AA* is 1. If A is projected 

to it, C0A + B + C regenerates as Eq. (2) shows. 

 
2 2 2 * *A   A AA  B  C C + A  B C A  B C AB .CA        (2) 

In this case, if memory regions A and B overlap, they do not separate. Then, in Fig. 4, it is 

advantageous for the recall of B, not to include C for projection. We mention the above 

results concretely in the following. When we project the fish and original point to temporal 

memory, we get the whole fish, and the original point as associative information, by 

projecting the face of the fish to the memory. On the contrary, when only the fish is projected, 

we get only the picture of the body of the fish. 

How high is the density of this memory compared with that of the 1-bit memory? Tanaka 

et al. compared the densities of 1-bit memory and holographic memory theoretically. They 

observed the multilayer of 1-bit memory by focusing the incident light onto the scatterer in 

the plane of the specific record layer [54]. They also realized the multilayer of hologram by 

changing the incidence angle of the reference light discretely [54]. They estimated the 



densities of these three-dimensional optical memories and showed that the densities were not 

markedly different. Here, we estimated the memory density in 2 dimensions only, because it 

was difficult to consider the effects of scattering on the other layers, which degraded the 

signal intensity. We evaluated columnar memory, in addition to holographic memory. 

Regarding association, the optical system of columnar memory is similar to that of 

holographic memory. The main difference is that the recorded memory is columnar in shape.  

If we represent these 2 memories by the position of neurons, the relative performances are 

dependent on the precision, resolution, and memory size. We use the bit as an information 

unit. We use bit density as the information unit per square wavelength. If multivalued 

memory is superior to two-valued memory, optical memory can have advantages over the 

two-valued memory of the transistor. We estimated the precision, resolution, and bit density. 

We compare the performance of single-value and multivalued memory in table 1. 

Two-valued memory is 1-bit memory such as Blu-ray, and multivalued memories are 

holographic memory and columnar memory. Here, we do not assume to increase the 

multiplicity of memory by an overwritten layer or multilayer structure [55]. We calculated 

the resolution of 1-bit memory according to the Rayleigh criterion [56]. This resolution is 

0.61 /NA [56], when a lens is used for picking up the scattered light. NA is the numerical 

aperture, and is at most 1 in the air [57]. We estimated the memory size of 1-bit memory for 

NA = 0.76. 



For columnar memory, we thought of an array of columns as shown in Fig. 5 for memory 

content. The distance between the (i-1)th column and the i-th column is given by 

1 1( )i x i i iy d X x x    , using the wavelength as the unit. Here, 0 0x  , and 0 0X  . i = 1, 2, 

3 ···, and ix  = 0, 1, 2, 3··· iX . xd is the precision, and 
iy  should be more than, or equal to, 

the resolution. The precision enhances by 0 filling in FT and it can be 0.01[17]. The 

resolution of the columnar memory is 0.8[17]. The bit number per wavelength is given by 

Eq. (3).  

     2,   log   1      .i i i i x ig X y X y d X         (3) 

We set resolutioniy  and 1iX X  for every i. When 1X  is a parameter,  1 1,g X y  has 

the maximum value  max 1,g X y . Using maxX , we calculated the bit density, as shown in 

the table. maxX  becomes 31 and  max 1,g X y  is 4.5 in table 1. The maximum change of 

column position becomes 28% against  1 x maxy d X . Here, the information is the distance 

from the original point to the detail of the picture in Fig. 3. 

In contrast, holographic memory is Fourier transformed to give the distance. Before 

considering the resolution, let us think of the angular distribution of scattering by 2 columns. 

The hologram and array of columns can be approximately connected by FT and inverse FT 

[17]. The function is approximated by Eq. (1) [47]. It is the simplest hologram. The 

sinusoidal convex should be resolved so that the column regenerate by inverse FT. Therefore, 

we can roughly estimate the resolution of the hologram by the resolution of columnar 



memory. When it is more than 0.8[17], each convex of the hologram is optically 

recognized Let us think of resolution from the viewpoint of producing the hologram. We can 

make the simplest hologram by using 2 coherent lights with incidence angles 1  and 2 , as 

shown in Fig. 2. The resulting period is 1 2/ sin( ) sin( )   [53]. When we make the 

hologram with period 0.8, 1  and 2  become −38.7° and 38.7°, respectively. 

When we inversely Fourier transform Eq. (1), 2 data points per period are necessary 

according to the Whittaker–Shannon sampling theorem[41], and 2 periods are necessary for 

the FT analysis. If the periods for analysis are smaller than 2, the peak scales out of the graph 

in Fig. 1b. Therefore, 4 points are necessary. The resolution and required number of points 

decide the bit density.  

As to the bit density in Table 1, holographic memory has a bit density as high as 1-bit 

memory. This result is not far from that of Tanaka et al. [54]. Columnar memory thus has 

more than 4 times the density of 1-bit memory.  

 Finally, we think the maximum change of the peak position of the hologram. Fourier 

transformed hologram makes the memory in Fig.5. Ignoring the constant term, when 

hologram is made from two columns, the refractive index distribution is approximately 

described by Eq. (1). The first peak at =2 changes 28% against d/ and the second peak at 

=4 changes 56%. When the distances include d and 5d, the change reaches 140% at =2. 

 



7. ASSOCIATIVE MEMORY AND COLUMNAR MEMORY 

Columnar memory is similar to the memory in the brain, because it is discrete and 

delocalized memory. Moreover, it can make a variety of shapes, and fine control of the 

scattering pattern may enable the high-level record mode. In this type of memory, the effect 

of the associative memory-like holography becomes possible by recording the 

Fourier-transformed image to the temporal memory region [34]. If it is temporal memory, the 

information can be represented by electric signals or distribution of ions, because the memory 

does not need a long lifetime. However, here, we use distribution of the refractive index 

instead of the electric signal as the model of temporary memory in order to make the memory 

model simple and consistent. For the actual memory system, photosensitive polymer can be 

used as the recording material of the hologram. 

 

8. THE BRAIN AND COLUMNAR MEMORY 

We discuss brain memory using a columnar memory model, expecting that we can get 

good match for the mechanism of the memory. This model requires the columnar scatterer of 

the original point to be on the edge of the scatterers, so that the positions of the other 

scatterers are identified. Actually, the hippocampus and peripheral cortex are located at the 

bottom of the brain [58, 59] in monkeys, and these regions play an important role in 

physiological memory [60, 61]. In this model, associative memory can be realized in 2 steps. 



The first step is projecting the information of the goldfish, including the face, body etc. to the 

same region of the temporal memory. The associative information comes back by the second 

step of projecting the relative picture onto the temporal memory. In fact, the association 

process seems to consist of 2 steps of cognition and judgment for the primate memory, and 

the direction of the electric signal flow is opposite [62]. 

In a previous study, a monkey was trained to associate 2 different pictures [63]. In this 

monkey, the neuronal correlates of associative long-term memory were located in the inferior 

temporal (IT) cortex [63], which is located beside the peripheral cortex. Single neurons in the 

IT cortex create linkages between representations of 2 different visual stimuli [63]. This may 

imply that the neuron of “goldfish” itself, or its location, include information on the 

connection between the specific neurons having information on the shape and idea of the 

goldfish. Then the IT cortex may be a candidate for the original point in Fig. 4a in monkeys. 

The medial temporal lobe of humans has a similar function [15], and is located adjacent to 

the peripheral cortex. 

 The location of the original point was suggested above. Then, the next interest is the 

location where the temporal memory for projection resides. Parietal activations are seen 

frequently in functional neuroimaging studies of episodic memory; on the other hand, parietal 

lesions do not normally yield severe episodic-memory deficits [61]. This is an unresolved 

problem. The function of the parietal cortex of humans and monkeys is similar [59]. If the 



place of episodic memory is the parietal cortex, and it works as the temporal associative 

memory, we can say that the parietal lesions in temporal memory do not affect the episodic 

memory to a great degree. 

 

9. CONCLUSIONS  

We have compared holographic memory with columnar optical memory in relation to the 

brain’s long-term memory. Columnar memory is similar to memory formed by an array of 

neurons in the following 3 ways: the columns are discrete memory, periodical fluctuation of 

electric fields exists in the columns, and subtle changes to columns can represent information.  

The change of position of the column is more subtle for multiple values than that of 

hologram, considering that hologram is made of trigonometric functions. Moreover, the 

density of this multivalued memory is more than 4 times higher than that of single-valued 

memory or holographic memory. Thus, columnar memory is useful as the model of brain 

memory. We present the combination of columnar memory and holographic memory as a 

model for memory in the brain to add the function of association to the columnar memory. In 

this model, columnar memory works as long-term memory, and holographic memory works 

as temporary memory. 



This model explains why single neurons can encode complex information, as does the 

grandmother cell. Moreover, it provides a scheme to explain primate associative memory and 

explains why the memory region may work even if it is damaged.  

Thus, we paid attention to the neuron’s structure and to the relationship between neurons 

and the memory, so that we were able to devise the optical memory system suitable for the 

brain. This memory is simple and concrete and is more similar to brain memory than 

holographic memory. 
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Fig. 1. The method used measure the distances [17] (a) The sample array of 

rectangles. (b) The analyzed results of the angular distribution of scattering. The 

horizontal axis is the calculated distance. The arrows indicate peaks, which represent 

the distance from rectangle 1 to rectangles 2, 3, and 4. 

Fig. 2. Schematic diagram depicting the arrangement of 2 incident lights and the 

hologram. 

Fig. 3. The associative memory of a hologram (a) Hologram made from scattering 

light from the face and body of goldfish. (b) The body is the response associated with 

the stimulus of the face. 

Fig. 4. The columnar memory model for explaining the brain’s memory mechanism 

(a) Content of long-term memory: goldfish and original point. (b) Visual stimulus of 

the fish face. (c) Hologram of the fish for the temporal memory. (d) Response to the 

stimulus 

Fig. 5. The arrangement of columnar memory. The rectangle is the column. The 

vertical line indicates the possible position of a column. The distance between the 

neighboring lines is xd . 

 



 

Table 1. Comparison of the densities of memory types 

Memory 

unit 

Information 

type 

Resolution 

() 

Precision 

() 

Number of 

points (1/bit) 

Bit density 

(1/2) 

1 bit ON/OFF 0.8 0.01 1 1.6 

Multiple 

bit 

Columns 0.8 0.01 0.22 7.0 

Hologram 0.8 0.01 0.89 1.8 
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Fig. 2. Schematic diagram depicting the arrangement of 2 incident lights and the 

hologram. 
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Fig. 3. The associative memory of a hologram (a) Hologram made from scattering 

light from the face and body of goldfish. (b) The body is the response associated with 

the stimulus of the face. 

 

 

Fig. 4. The columnar memory model for explaining the brain’s memory mechanism 

(a) Content of long-term memory: goldfish and original point. (b) Visual stimulus of 

the fish face. (c) Hologram of the fish for the temporal memory. (d) Response to the 

stimulus. 
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Fig. 5. The arrangement of columnar memory. The rectangle is the column. The 

vertical line indicates the possible position of a column. The distance between the 

neighboring lines is xd . 
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