41 research outputs found

    Gene expression profiling and network analysis of peripheral blood monocytes in a chronic model of allergic asthma

    Full text link
    The Aspergillus fumigatus mouse model of asthma mimics the characteristics of human fungal asthma, including local and systemic inflammation. Monocyte/macrophage lineage cells direct innate immune responses and guide adaptive responses. To identify gene expression changes in peripheral blood monocytes in the context of fungal allergy, mice were exposed to systemic and intranasal inoculations of fungal antigen (sensitized), and naïve and sensitized animals were challenged intratracheally with live A. fumigatus conidia. Microarray analysis of blood monocytes from allergic versus non-allergic mice showed ≥ twofold modulation of 45 genes. Ingenuity pathway analysis revealed a network of these genes involved in antigen presentation, inflammation, and immune cell trafficking. These data show that allergen sensitization and challenge affects gene expression in peripheral monocytes.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/79085/1/j.1348-0421.2010.00242.x.pd

    The Impact of Aspergillus fumigatus Viability and Sensitization to Its Allergens on the Murine Allergic Asthma Phenotype

    Get PDF
    Aspergillus fumigatus is a ubiquitously present respiratory pathogen. The outcome of a pulmonary disease may vary significantly with fungal viability and host immune status. Our objective in this study was (1) to assess the ability of inhaled irradiation-killed or live A. fumigatus spores to induce allergic pulmonary disease and (2) to assess the extent to which inhaled dead or live A. fumigatus spores influence pulmonary symptoms in a previously established allergic state. Our newly developed fungal delivery apparatus allowed us to recapitulate human exposure through repeated inhalation of dry fungal spores in an animal model. We found that live A. fumigatus spore inhalation led to a significantly increased humoral response, pulmonary inflammation, and airway remodeling in naïve mice and is more likely to induce allergic asthma symptoms than the dead spores. In contrast, in allergic mice, inhalation of dead and live conidia recruited neutrophils and induced goblet cell metaplasia. This data suggests that asthma symptoms might be exacerbated by the inhalation of live or dead spores in individuals with established allergy to fungal antigens, although the extent of symptoms was less with dead spores. These results are likely to be important while considering fungal exposure assessment methods and for making informed therapeutic decisions for mold-associated diseases

    Eosinophils in fungus-associated allergic pulmonary disease

    Get PDF
    Asthma is frequently caused and/or exacerbated by sensitization to fungal allergens, which are ubiquitous in many indoor and outdoor environments. Severe asthma with fungal sensitization is characterized by airway hyperresponsiveness and bronchial constriction in response to an inhaled allergen that is worsened by environmental exposure to airborne fungi and which leads to a disease course that is often very difficult to treat with standard asthma therapies. As a result of complex interactions among inflammatory cells, structural cells, and the intercellular matrix of the allergic lung, patients with sensitization to fungal allergens may experience a greater degree of airway wall remodeling and progressive, accumulated pulmonary dysfunction as part of the disease sequela. From their development in the bone marrow to their recruitment to the lung via chemokine and cytokine networks, eosinophils form an important component of the inflammatory milieu that is associated with this syndrome. Eosinophils are recognized as complex multi-factorial leukocytes with diverse functions in the context of allergic fungal asthma. In this review, we will consider recent advances in our understanding of the molecular mechanisms that are associated with eosinophil development and migration to the allergic lung in response to fungal inhalation, along with the eosinophil’s function in the immune response to and the immunopathology attributed to fungus-associated allergic pulmonary disease

    Ten weeks of high-intensity interval walk training is associated with reduced disease activity and improved innate immune function in older adults with rheumatoid arthritis: a pilot study

    No full text
    Abstract Background Rheumatoid arthritis (RA) is a chronic inflammatory disease in which adults have significant joint issues leading to poor health. Poor health is compounded by many factors, including exercise avoidance and increased risk of opportunistic infection. Exercise training can improve the health of patients with RA and potentially improve immune function; however, information on the effects of high-intensity interval training (HIIT) in RA is limited. We sought to determine whether 10 weeks of a walking-based HIIT program would be associated with health improvements as measured by disease activity and aerobic fitness. Further, we assessed whether HIIT was associated with improved immune function, specifically antimicrobial/bacterial functions of neutrophils and monocytes. Methods Twelve physically inactive adults aged 64 ± 7 years with either seropositive or radiographically proven (bone erosions) RA completed 10 weeks of high-intensity interval walking. Training consisted of 3 × 30-minute sessions/week of ten ≥ 60-second intervals of high intensity (80–90% VO2reserve) separated by similar bouts of lower-intensity intervals (50–60% VO2reserve). Pre- and postintervention assessments included aerobic and physical function; disease activity as measured by Disease Activity score in 28 joints (DAS28), self-perceived health, C-reactive protein (CRP), and erythrocyte sedimentation rate (ESR); plasma interleukin (IL)-1β, IL-6, chemokine (C-X-C motif) ligand (CXCL)-8, IL-10, and tumor necrosis factor (TNF)-α concentrations; and neutrophil and monocyte phenotypes and functions. Results Despite minimal body composition change, cardiorespiratory fitness increased by 9% (change in both relative and absolute aerobic capacity; p < 0.001), and resting blood pressure and heart rate were both reduced (both p < 0.05). Postintervention disease activity was reduced by 38% (DAS28; p = 0.001) with significant reductions in ESR and swollen joints as well as improved self-perceived health. Neutrophil migration toward CXCL-8 (p = 0.003), phagocytosis of Escherichia coli (p = 0.03), and ROS production (p < 0.001) all increased following training. The frequency of cluster of differentiation 14-positive (CD14+)/CD16+ monocytes was reduced (p = 0.002), with both nonclassical (CD14dim/CD16bright) and intermediate (CD14bright/CD16positive) monocytes being reduced (both p < 0.05). Following training, the cell surface expression of intermediate monocyte Toll-like receptor 2 (TLR2), TLR4, and HLA-DR was reduced (all p < 0.05), and monocyte phagocytosis of E. coli increased (p = 0.02). No changes were observed for inflammatory markers IL-1β, IL-6, CXCL-8, IL-10, CRP, or TNF-α. Conclusions We report for the first time, to our knowledge, that a high-intensity interval walking protocol in older adults with stable RA is associated with reduced disease activity, improved cardiovascular fitness, and improved innate immune functions, indicative of reduced infection risk and inflammatory potential. Importantly, the exercise program was well tolerated by these patients. Trial registration ClinicalTrials.gov, NCT02528344. Registered on 19 August 2015

    Rejuvenation of Neutrophil Functions in Association With Reduced Diabetes Risk Following Ten Weeks of Low-Volume High Intensity Interval Walking in Older Adults With Prediabetes - A Pilot Study.

    Get PDF
    Neutrophil dysfunction is a common feature of aging, and is associated with the pathogenesis of many age-related diseases, including type 2 diabetes mellitus (T2DM). Although exercise training improves metabolic health, decreases risk of T2DM, and is associated with improving neutrophil functions, involvement in regular physical activity declines with age. The aim of this study was to determine if neutrophil functions could be improved in association with changes in fitness and metabolic parameters in older adults at risk for T2DM using 10-weeks of low volume high-intensity interval exercise training (HIIT). Ten older (71 ± 5 years) sedentary adults with prediabetes (HbA1c: 6.1 ± 0.3%) completed 10 weeks of a supervised HIIT program. Three 30 min sessions/week consisted of ten 60 s intervals of low intensity [50-60% heart rate reserve (HRR)] separated with similar durations of high intensity intervals (80-90% HRR). Before and after training, glucose and insulin sensitivity, neutrophil chemotaxis, bacterial phagocytosis, reactive oxygen species (ROS) production, and mitochondrial functions were assessed. Exercise-mediated changes in cardiorespiratory fitness (VO) and neutrophil functions were compared to six young (23 ± 1 years) healthy adults. Following training, significant reductions in fasting glucose and insulin were accompanied by improved glucose control and insulin sensitivity (all < 0.05). Before exercise training, VO in the old participants was significantly less than that of the young controls ( < 0.001), but increased by 16 ± 11% following training ( = 0.002) resulting in a 6% improvement of the deficit. Neutrophil chemotaxis, phagocytosis and stimulated ROS production were significantly less than that of the young controls, while basal ROS were higher before training (all < 0.05). Following training, chemotaxis, phagocytosis and stimulated ROS increased while basal ROS decreased, similar to levels observed in the young controls (all < 0.05) and reducing the deficit of the young controls between 2 and 154%. In five of the adults with prediabetes, neutrophil mitochondrial functions were significantly poorer than the six young controls before training. Following training, mitochondrial functions improved toward those observed in young controls (all < 0.05), reducing the deficit of the young controls between 14.3 and 451%. Ten weeks of HIIT in older adults at risk for T2DM reduced disease risk accompanied by improved primary and bioenergetic neutrophil functions. Our results are consistent with a reduced risk of infections mediated by relationships in exercise induced systemic and cellular metabolic features. www.ClinicalTrials.gov, identifier NCT02441205, registered on May 12th, 2015
    corecore