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Asthma is frequently caused and/or exacerbated by sensitization to fungal allergens, which
are ubiquitous in many indoor and outdoor environments. Severe asthma with fungal
sensitization is characterized by airway hyperresponsiveness and bronchial constriction
in response to an inhaled allergen that is worsened by environmental exposure to air-
borne fungi and which leads to a disease course that is often very difficult to treat with
standard asthma therapies. As a result of complex interactions among inflammatory cells,
structural cells, and the intercellular matrix of the allergic lung, patients with sensitiza-
tion to fungal allergens may experience a greater degree of airway wall remodeling and
progressive, accumulated pulmonary dysfunction as part of the disease sequela. From
their development in the bone marrow to their recruitment to the lung via chemokine and
cytokine networks, eosinophils form an important component of the inflammatory milieu
that is associated with this syndrome. Eosinophils are recognized as complex multi-factorial
leukocytes with diverse functions in the context of allergic fungal asthma. In this review,
we will consider recent advances in our understanding of the molecular mechanisms that
are associated with eosinophil development and migration to the allergic lung in response
to fungal inhalation, along with the eosinophil’s function in the immune response to and
the immunopathology attributed to fungus-associated allergic pulmonary disease.
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INTRODUCTION
Increasing recruitment of eosinophils into affected tissues is
a cardinal feature of allergic disease. In allergic asthma, the
Th2-mediated immune response orchestrates the production of
cytokines and chemokines that coordinate to provide an increase
in the number of eosinophils that are produced in the bone mar-
row to travel through the circulatory system to the lung in response
to an inhaled allergen challenge. In recent decades, the preva-
lence of asthma in the U.S. and other industrialized countries
has dramatically increased (Lindell et al., 2008). In 2009, asthma
afflicted 8.2% of adults and children in the U.S., 24.6 million
persons (Nassenstein et al., 2005; Umetsu and DeKruyff, 2006;
Knutsen et al., 2012). In the context of asthma, sensitization to
fungi presents a severe clinical scenario that is difficult to treat,
accounting for a disproportionately large number of emergency
center visits and hospitalizations (Knutsen et al., 2012). Fungal
avoidance strategies are often impractical, since fungal spores are
ubiquitous in many indoor and outdoor environments and may
be found at any time of year. Airway inflammation, marked by
a robust eosinophilia, exacerbates asthma symptoms and acti-
vates structural cells, which over time changes the architecture
of the lung. Metaplasia of the bronchial epithelial layer to mucus-
producing goblet cells results in mucus-obstructed airways, and
increases in both airway smooth muscle and peribronchial fibrosis
often results in significant loss of pulmonary function.

Allergic asthma arises as a result of an immune
response triggered by the inhalation of (often) non-infectious

environmental antigens. For this reason, respiratory allergies have
been classified by many as aberrant immune responses precipitated
by a poorly educated immune system or by cross-reactivity to
allergens that are similar to host proteins. In their role in the
lung, eosinophils, the granulocytes most often associated with
allergic asthma, are frequently maligned as participants in the
pathogenesis of allergic lung disease. However, recent research
suggests that one of the important roles of the eosinophil may
be in their ability to carry out important immune functions in the
lumen of the airway, a compartment that is not readily accessible
by many other cell types. Thus, the eosinophil may be utilized
as an antifungal mechanism to prevent infection. This review
focuses on the current understanding of the molecular mecha-
nisms that are associated with eosinophil activation, recruitment
to the lung, and the function of these multi-factorial granulocytes
in allergic/fungus-associated allergic pulmonary disease.

DEVELOPMENT OF EOSINOPHILIA IN FUNGAL ASTHMA
Eosinophils develop and mature in the bone marrow from CD34+

pluripotent progenitor cells under the influence of interleukin-
3 (IL-3) and granulocyte macrophage colony stimulating factor
(GM-CSF), with Interleukin-5 (IL-5) acting as a late differen-
tiation factor (Figure 1). Eosinophil differentiation is induced
by the synchronized actions of the transcription factors GATA-
1 (a zinc finger family member), PU.1 (an Ets family member),
and CCAAT/enhancer-binding protein (C/EBP) family members
(Hirasawa et al., 2002; McNagny and Graf, 2002; Trivedi and Lloyd,
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Ghosh et al. Eosinophils in fungus-associated allergic pulmonary disease

FIGURE 1 | IL-5 and eotaxin-induced eosinophil recruitment in allergic
asthma. Inhaled allergens activate Th2 lymphocytes and mast cells to
produce the cytokines IL-4, IL-5, IL-13, and TNF-α. These cytokines stimulate
lung epithelial cells, fibroblasts, and smooth muscle cells to produce

eotaxin. IL-5 modulates eosinophil migration from the bone marrow
through its action on eotaxin and Th2 cells. Eotaxin on the other hand
modulates eosinophil homing to the lung tissue via CCR3 which is present
on eosinophils.

2007). The contribution of other transcription factors and sub-
types may also be important in eosinophil development but is less
well established (McNagny and Graf, 2002).

Even though GATA-1, PU.1, and C/EBP are expressed by a
variety of hematopoietic lineages, it is their expression and coor-
dination with a unique cytokine and growth factor cocktail that
results in the selective development of eosinophils. IL-3, GM-CSF,
and IL-5 are associated with the development of various cells
of the myeloid lineage and signal through receptors that share a
common β-chain but have cytokine-specific α-chains (Sanderson,
1992; Uhm et al., 2012). All of the three cytokines play a central role
in eosinophil development, endothelial adhesion, activation, and
survival in fungal asthma. They act upon progenitor cells within
the bone marrow as well as mature cells in the periphery.

Eosinophils are typically released to the peripheral blood
as fully differentiated mature cells. In non-atopic humans,
eosinophils make up less than 1% of the peripheral leukocytes
in the blood. In allergic conditions, newly released eosinophils
circulate in the blood for a short period before homing preferen-
tially to the lung, skin, and gut mucosa using eotaxin chemokine
signals and the expressed adhesion marker MAdCAM-1 (Walsh,
1999; Uhm et al., 2012). They can persist in the circulation for
8–12 h and can reside in the tissues for up to 2 weeks through the
autocrine production of GM-CSF, which is instigated by the cell’s
interaction with the extracellular matrix (ECM; Anwar et al., 1993;
Uhm et al., 2012).

In the atopic patient, sensitization of the bronchial mucosa
signals an increase in eosinophilopoiesis, which provides a ready
pool of mature eosinophils that can be released in response to
allergen challenge/fungal challenge (Hogaboam et al., 2000, 2005;
Hoselton et al., 2010). Although the number of eosinophils is quite

variable, they are elevated in the majority of asthmatics and may
reach 30% of the bronchoalveolar lavage (BAL) cells (Wardlaw
et al., 2000; Hoselton et al., 2010; Ghosh et al., 2012) that are
differentially counted from the airway of asthmatics and 50% of
the cells in an induced sputum specimen (Wardlaw et al., 2000).
Along with an increase in the number of mature eosinophils in
the periphery, there is mounting evidence that CD34+ CD45+ IL-
5Rα eosinophil progenitor cells may be capable of migrating from
the bone marrow to the site of allergic inflammation in asthmatic
patients (Robinson et al., 1999; Dorman et al., 2005; Menzies-Gow
et al., 2007; Murdock et al., 2012). Similar observations have been
reported using murine models of fungal allergic asthma showing
that 6 h after allergen challenge CD34+CD45+IL-5Rα+ eosinophil
progenitor cell populations are elevated in the murine lung (Saito
et al., 2002; Johansson et al., 2004; Southam et al., 2005; Murdock
et al., 2012; Rosenberg et al., 2013).

ACTIVATION OF EOSINOPHILS AND RECRUITMENT TO THE
ALLERGIC LUNG
Antigen-specific activation of Th2 cells plays an important role in
eosinophilic inflammation in allergic asthma, and T cell-deficient
mice are protected from lung eosinophilia and airway hyperre-
sponsiveness (AHR; Gavett et al., 1994; Gonzalo et al., 1996).
The cytokines IL-4, IL-5, and IL-13, all of which are produced by
Th2 cells after fungal allergen challenge, stimulate and enhance
the production of eotaxin. Eotaxin then works with the Th2-
derived cytokine IL-5 in the selective recruitment of eosinophils
(Gutierrez-Ramos et al., 1999; Lloyd et al., 2000; Foster et al., 2001).
In a murine model of fungal allergic asthma, eotaxin plays a role
in the early recruitment of Th2 cells (Schuh et al., 2002). Fungal
studies using an Aspergillus fumigatus intratracheal model system
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have demonstrated IL-17’s central role in driving eosinophilia in
Th2-mediated allergic airway inflammation (Schnyder-Candrian
et al., 2006; Murdock et al., 2012). IL-17 has also been shown to
induce eotaxin-1 expression in human airway smooth muscle cells
(Rahman et al., 2006). A summary of eosinophil trafficking in the
allergic lung is shown in Figure 1.

Pro-inflammatory cytokines work in coordination with
chemokine that are produced at the sites of chronic inflamma-
tion to attract mature eosinophils from the bone marrow (Barnes,
2008). The initiation and maintenance of eosinophil migration
depends on the cooperative nature of the chemotactic and chemo-
kinetic signals. The receptor profile on the surface of the eosinophil
dictates which, if any, chemoattractants will regulate movement
and to what extent migration can be induced. By promoting recep-
tor aggregation and the co-localization of downstream signaling
mediators, binding of IL-5, IL-3, and GM-CSF primes eosinophil

responses to chemoattractants, allowing movement to be initiated
by the chemotactic agent (Simson and Foster, 2000; Uhm et al.,
2012). In the case of eosinophils, a number of mediators are known
to induce eosinophil migration by inducing chemotactic and/or
chemokinetic responses in the cell (Table 1).

IL-5
Interleukin-5 is secreted by mast cells and T cells in the late
phase of the inflammatory response and plays a key role in the
recruitment of eosinophils from the bone marrow, amplifying
the chemoattractant potential of chemokines in the tissues. IL-5
primes eosinophils and amplifies intracellular signaling systems
coupled to chemokine receptors. The crosstalk between signal
transduction molecules used in these processes serves to generate
distinct and/or amplified migratory responses (Simson and Foster,
2000). IL-5 is elevated in fungal allergy and plays a critical role in

Table 1 | Mediators involved in eosinophil migration.

Type EffectivenessFunction Reference

CYTOKINES

IL-5 Moderate

to high

Primes eosinophils, chemotaxis, chemokinesis,

selective, and regulate adhesion pathways

Sanderson (1992), Collins et al. (1995), Mould et al. (1997), Simson

and Foster (2000), and Barnes (2008)

IL-3 and GM-CSF Low Chemotaxis and increase expression of IL-5R

Non-selective

Sanderson (1992), Mould et al. (1997), Simson and Foster (2000),

Barnes (2008), and Boldajipour et al. (2008)

IL-17 Low Murdock et al. (2012)

CHEMOKINES

Eotaxins High Selective and regulates adhesion pathways Collins et al. (1995), Mould et al. (1997), Simson and Foster (2000),

Borchers et al. (2002), and Paplinska et al. (2007)

MIP-1α High Primes eosinophils and non-selective Schweizer et al. (1996), Simson and Foster (2000), Conti and

Digioacchino (2001), Kayaba and Chihara (2001), and Magalhaes et al.

(2009)

RANTES Moderate Non-selective Schweizer et al. (1996), Simson and Foster (2000), Conti and

Digioacchino (2001), and Borchers et al. (2002)

MCP-3 High Non-selective Hansel et al. (1993), Rozell et al. (1996), Schweizer et al. (1996), and

Simson and Foster (2000)

IL-8 Low Non-selective Hansel et al. (1993) and Hamid and Tulic (2009)

LIPIDS

PAF Moderate

to High

Non-selective Morita et al. (1989), Hwang (1990), Simson and Foster (2000), Kato

et al. (2004), and Rosenberg et al. (2007)

LTB4 Low Non-selective Morita et al. (1989), Munoz et al. (1997), Simson and Foster (2000),

and Rosenberg et al. (2007)

LTE4 Low Non-selective Morita et al. (1989), Munoz et al. (1997), Simson and Foster (2000),

Bandeira-Melo and Weller (2003), and Rosenberg et al. (2007)

FUNGAL COMPONENTS

Chitin Low Non-selective Van Dyken et al. (2011)

ANAPHYLATOXINS

C3a Moderate

to high

Selective Daffern et al. (1995), Discipio et al. (1999), and Discipio and

Schraufstatter (2007)

C5a Moderate

to high

Non-selective Discipio et al. (1999), Guo and Ward (2005), and Discipio and

Schraufstatter (2007)
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the differentiation, proliferation, and maturation of eosinophils
in the bone marrow (Templeton et al., 2010). Recent studies
have also shown a role of epithelial cell-derived cytokine thymic
stromal lymphoprotein (TSLP), IL-25, and IL-33 in promoting
eosinophilia by inducing IL-5 production (Rosenberg et al., 2013).

The IL-5 receptor, IL-5R, is expressed only on eosinophils
and basophils (Robinson et al., 1999; Christodoulopoulos et al.,
2000; Menzies-Gow et al., 2003, 2007). The expression of IL-5R
on eosinophils is closely regulated and depends upon the acti-
vation state and anatomical location of the cell. For example,
human umbilical cord-derived CD34+ cells stimulated with IL-
3, IL-5, and GM-CSF leads to the up-regulation of IL-5Rα; an
important step in eosinophil lineage commitment (Tavernier et al.,
2000). However, its expression is downregulated on mature human
eosinophils when treated the same cocktail of cytokines (Gregory
et al., 2003). Although the receptors are found on a wider range
of cells, administration of IL-3 and GM-CSF has been shown to
promote eosinophil production in animal models, as well as in
clinical trials (Sanderson, 1992; Ueno et al., 1994; Takamoto and
Sugane, 1995).

Furthermore, transgenic mice that constitutively express IL-5
in the lung epithelium develop an accumulation of eosinophils
and pathologic changes including goblet cell hyperplasia, epithe-
lial hypertrophy, and AHR even in the absence of antigen challenge
(Lee et al., 1997).

SIGNAL TRANSDUCTION THROUGH CHEMOKINE RECEPTORS
Signal transduction initiated by chemoattractant receptors serves
to generate distinct and/or amplified cellular responses (Simson
and Foster,2000). The ability of eosinophils to generate unique cel-
lular responses lies in their activation of their receptor-mediated
pathways. The GTPases, which belong to the Ras and Rho families,
appear to play an important role at several critical checkpoints in
eosinophil development and function (Hall, 1998; Henning and
Cantrell, 1998; Muessel et al., 2008), including an integral role in
shape, receptor aggregation, and cell migration.

Chemokines signal through G protein-coupled receptors
(GPCRs) on the eosinophil’s surface. Three chemokine receptor
subgroups are currently recognized – CCR, CXCR, and CX3CR1 –
which recognize chemokines of the corresponding family. How-
ever, in most cases, chemokine receptors recognize more than
one chemokine in that family and several chemokines bind to
more than one receptor, although this ostensible promiscuity and
redundancy may be limited by spatial and temporal regulation
of these molecules (Baggiolini, 1998; Simson and Foster, 2000;
Ono et al., 2003). In contrast to chemokine receptors, members of
the cytokine receptor family consist of cell surface glycoproteins
(Bagley et al., 1997; Simson and Foster, 2000; Le et al., 2004). These
receptors display similar structural and functional properties. The
receptors for IL-5, IL-3, and GM-CSF share structural similari-
ties, although upon ligand binding the IL-5 and IL-3 receptors
oligomerize while that of GM-CSF exists as a preformed complex
(Simson and Foster, 2000; Ono et al., 2003).

Eosinophils express receptors for the CC chemokine fam-
ily (Ponath et al., 1996; Borchers et al., 2002). Although many
chemokines appear to be highly redundant and their receptors
to be promiscuous, only three eosinophil chemotactic cytokines

are known to interact with eosinophils. The eotaxins 1–3 sig-
nal on eosinophils through the seven-transmembrane receptor
CCR3 (Conroy and Williams, 2001; Liu et al., 2006; Rosenberg
et al., 2007). Eotaxin acts via the chemokine receptor CCR3
on eosinophils to stimulate the selective recruitment of these
cells from the airway micro-vessels into the lung tissue (Pope
et al., 2005). Animal models show a fundamental and syner-
gistic role for IL-5 and eotaxin in the migration of eosinophils
under basal conditions (Matthews et al., 1998), as well as dur-
ing fungal allergy (Mould et al., 1997; Matthews et al., 1998;
Schuh et al., 2002). Subcutaneous administration of IL-5 induces
a concentration-dependent eosinophilia in mice (Palframan et al.,
1998).

Eotaxin is expressed basally, but fungal challenge leads to an
early increase in production and recruitment of eosinophils in
allergic mice (Garcia-Zepeda et al., 1996; Lamkhioued et al., 1997;
Matthews et al., 1998; Hoselton et al., 2010; Samarasinghe et al.,
2010, 2011a,b). The cytokines produced during the early phase
response such as IFN-γ, TNF-α, and IL-1β may regulate the pro-
duction of eotaxin from endothelial cells which in turn promotes
blood and tissue eosinophilia in the late phase response (Cook
et al., 1998).

In addition to the eotaxins, eosinophil migration toward
an increasing chemokine gradient may be elicited with other
CC chemokines including CCL2/MCP-1 (monocyte chemotactic
protein-1), CCL3/MIP-1α (macrophage inflammatory protein-
1α), CCL5/RANTES (regulated upon activation, normal T cell
expressed, and secreted), and CCL7/MCP-3. Although none of
these is considered to be a specific eosinophil chemoattractant
(Ponath et al., 1996; Schuh et al., 2003), each may play a role in
the changing environment of the allergic lung as disease devel-
ops. Blockade of eotaxin using neutralizing antibodies (Abs)
and single eotaxin-KO (Rothenberg et al., 1997) animals have
revealed a significant, yet incomplete, reduction in eosinophilic
inflammation (Rothenberg et al., 1997; Uhm et al., 2012). For
example, the combined actions of the CC chemokines RANTES,
MCP-1, and MCP-5, led to the development of OVA-induced
lung eosinophilia (Gonzalo et al., 1998). Although it interacts
non-specifically with eosinophils, neutralization of RANTES com-
pletely abolished OVA-induced lung eosinophilia (Gonzalo et al.,
1998). Eosinophils express the chemokine receptor CCR1, which
binds MIP-1α, RANTES, and MCP. There is an increase in the
mRNA expression of MCP-1, RANTES, and MIP-1α (Alam et al.,
1996; Khalid et al., 2008) after allergen/fungal challenge and MIP-
1α blockade has been shown to reduce lung eosinophils by 20%
(Holgate et al., 1997; Gonzalo et al., 1998). In addition to CCR1
and CCR3, the CCL1/CCR8 axis has also been shown to preferen-
tially induce the recruitment of eosinophils to the lung following
allergen challenge (Lloyd and Rankin, 2003). These data demon-
strate that CCR1 and other chemokine receptors may also be an
important target in blocking eosinophil responses.

IL-5/EOTAXIN SYNERGISM FOR CELL RECRUITMENT
Eotaxin and IL-5 act co-operatively to regulate eosinophil homing
and tissue accumulation (Collins et al., 1995; Choi et al., 2003).
Murine studies using IL-5 KO mice have shown that subcuta-
neous administration of eotaxin alone is insufficient to induce
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tissue eosinophilia. Tissue eosinophilia could only be restored in
these mice by administration of intravenous IL-5 for 72 h (Palfra-
man et al., 1998). Other studies have shown that eotaxin plays an
important role in initiating both blood and tissue eosinophilia in
the early phase of allergic inflammation (Schuh et al., 2002), while
IL-5 is essential for eotaxin-induced tissue eosinophilia (Collins
et al., 1995; Rothenberg et al., 1996; Mould et al., 1997).

Following eotaxin activation, a series of events are triggered
in the eosinophil, including calcium mobilization, CD11b up-
regulation, mitogen-activated protein kinase (MAP-kinase) acti-
vation, RhoA/ROCK pathway activation, reactive oxygen produc-
tion, actin polymerization, and a rapid change in shape which is
associated with cell migration/chemotaxis and/or granule release
(Schmitz et al., 2000; Conroy and Williams, 2001; Sahai and
Marshall, 2003; Paplinska et al., 2007; Muessel et al., 2008).

Incubating human eosinophils with IL-5 increases their migra-
tory response to Platelet-activating factor (PAF), Leukotriene
B4 (LTB4), Vasoactive intestinal peptide (VIP), and Formyl-
Methionyl-Leucyl-Phenylalanine (FMLP), while having no effect
on neutrophils (Numao and Agrawal, 1992; Sehmi et al., 1992;
El-Shazly et al., 2000). Therefore, the presence of these mediators
in the asthmatic lung may contribute to eosinophil migration in
the presence of IL-5 (Trivedi and Lloyd, 2007) and these medi-
ators have been shown to have stimulatory and chemoattractant
properties.

ADHESION MOLECULES
Interleukin-5 and eotaxin cooperate to regulate eosinophil homing
and tissue accumulation in allergic/fungal asthma by regulating
adhesion pathways used by this leukocyte (Rothenberg et al., 1996;
Schuh et al., 2002; Choi et al., 2003). Eosinophils express seven
integrin heterodimers (Barthel et al., 2008): α4β1 (CD49d/29),
α6β1(CD49f/29), αMβ2 (CD11b/18), αLβ2 (CD11a/18), αXβ2
(CD11c/18), αDβ2(CD11d/18), and α4β7 (CD49d/β7; Georas
et al., 1993; Grayson et al., 1998; Tachimoto and Bochner, 2000).
Each set of heterodimers interacts with its own ligand which is
deposited in ECM or a counter-receptor on another cell. Under-
standing the function of integrin receptors on a given cell type
is complicated by the fact that each integrin may be present
in different conformational states, and may have varying lev-
els of expression and clustering on the cell surface (Humphries,
2004; Xiao et al., 2004; Hogg et al., 2011; Long, 2011; Vestwe-
ber, 2012). Therefore, the migration of eosinophils to the allergic
lung involves a complex interplay of integrin receptors in differ-
ent states of activation, interacting with a diverse set of ligands
on bronchial endothelium and cells within the tissue. The adhe-
sion molecules, particularly the α4β1 integrin very late antigen
(VLA)-4, a ligand for the integrin vascular cell adhesion mole-
cule (VCAM)-1, αAβ2 for ICAM-1, and the P-selectin glycoprotein
ligand (PSGL)-1 ligand for P-selectin mediate the migration of
eosniophils across epithelial and endothelial barriers (Rosenberg
et al., 2007). Eotaxin-1 plays a role in regulating the expression
of VLA-4 on eosinophils (Jia et al., 1999; Sung et al., 2000) and
studies performed with anti-integrins and blocking Abs for VLA-4
on mice subjected to allergen challenge suggest that this ligand is a
crucial component of the eosinophil inflammatory response (Gas-
coigne et al., 2003; Koo et al., 2003). Because the VLA-4/VCAM-1

interaction promotes the specific adhesion of eosinophils and
not neutrophils, several small molecule inhibitors of the VLA-
4/VCAM-1 interaction are under exploration as asthma therapeu-
tics (Hagmann, 2004; Okigami et al., 2007). In addition to IL-5
and eotaxin, GM-CSF has also been shown to promote eosinophil
migration. Integrins αMβ2 (Mac-1/CD11b) or β2 (CD18) have
been shown to play a role in GM-CSF induced eosinophil migra-
tion (Muessel et al., 2008). Furthermore, recent studies have shown
that in atopic patients there is an increase in the expression of
2B4 (CD244; Munitz et al., 2005; El-Shazly et al., 2011) and
CD48 (Munitz et al., 2006) on eosinophils indicating a broader
role of these receptors on human eosinophils. Future studies that
may involve elucidating the role of these receptors in promoting
inflammation in fungal allergy would be of great interest.

Studies using ragweed pollen in both P-selectin- and ICAM-
deficient mice have shown a decrease in pulmonary eosinophilia
when compared to wild type controls, although eosinophil recruit-
ment was not completely abolished in P-selectin/ICAM-1 double
KO mice (Broide et al., 1998). Complete abrogation of eosinophilia
was observed in ICAM-1/VCAM-1 double KO mice after allergen
challenge (Gonzalo et al., 1996), demonstrating the direct regula-
tion of endothelial-eosinophil interactions governing eosinophilia
(Gonzalo et al., 1996).

COMPLEMENT PROTEINS, EXTRACELLULAR MATRIX COMPONENTS,
NEUROPEPTIDES, AND OTHER MOLECULES
Platelet-activating factor, VIP, and secretin are capable of induc-
ing chemotaxis of human eosinophils (El-Shazly et al., 1996,
2000; Schweizer et al., 1996; Dunzendorfer et al., 1998). Other
eosinophil chemoattractants include lipid mediators such as cys-
teinyl leukotrienes (LTB4 and LTE4), bacterial-derived peptide
fMLP, and the complement anaphylatoxins C3a and C5a (Rot et al.,
1992; Dahinden et al., 1994; Simson and Foster, 2000; Kato et al.,
2004).

Complement anaphylatoxins C3a and C5a induce eosinophil
migration and extravasation into tissues in allergic/fungal asthma
(Humbles et al., 2000; Baelder et al., 2005; Guo and Ward, 2005;
Discipio and Schraufstatter, 2007). Although C3a and C5a influ-
ence many cell types, they are most well recognized as mediators of
leukocyte activation (Hugli, 1986; Jagels et al., 2000). Eosinophils
express both C3a and C5a receptors. C3a is highly selective for
eosinophil migration, while C5a shows a broader range of cel-
lular actions with an even more potent activation of eosinophil
recruitment (Daffern et al., 1995; Discipio et al., 1999). Receptors
for C3a and C5a belong to the GPCR family that is characterized
by a seven-membrane spanning polypeptide chain, which is func-
tionally associated with a pertussis toxin-sensitive G protein. In
granulocytes, this is Gαi (Norgauer et al., 1993; Ames et al., 1996;
Roglic et al., 1996; Guo and Ward, 2005). C5a initiates a complex
cell signaling system in eosinophils through tyrosine kinase acti-
vation of phosphatidylinositol 3 kinase, which induces changes in
cellular morphology that are necessary for the cell to migrate along
a chemotactic or haptotactic gradient (Norgauer et al., 1993; Ames
et al., 1996; Jagels et al., 2000).

Eosinophils survive in the tissues due to an autoregulatory
production of GM-CSF as a result of the adhesion of α4 to
fibronectin in the extracellular tissue matrix (Mishra et al., 1999).
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Recent studies by Ohkawara et al. (2000) have shown a role of the
glycosaminoglycan hyaluronic acid, which is also a component of
the ECM in the activation and survival of eosinophils. Further
studies on the role of ECM components in eosinophil migration,
chemotaxis, and function in fungal asthma would have important
implications for understanding their role in eosinophil activation
in health and disease.

In the past decade or so, intensive work in the fields of neu-
ropeptides and immune cells has resulted in accumulating evi-
dence that supports the existence of a neuroimmune axis (Numao
and Agrawal, 1992; El-Shazly et al., 2000). Neuropeptides, such as
VIP and secretin, are capable of inducing chemotaxis of human
eosinophils (Schweizer et al., 1996; Dunzendorfer et al., 1998; El-
Shazly et al., 2000). Furthermore, VIP has been shown to induce
eosinophil derived neurotoxin (EDN) release in a potency compa-
rable to that induced by platelet-activating factor (El-Shazly et al.,
2000). Studies using an A. fumigatus inhalational allergic model
system have shown that theVIP signaling through itsVPAC2 recep-
tor dysregulates or causes significant temporal delays of immune
cell recruitment and Th2 polarization (Hoselton et al., 2010; Sama-
rasinghe et al., 2010). In vivo experiments using VPAC2-deficient
mice in an allergic fungal model have supported the proposition
that the Th2 phenotype is induced by VPAC2 signaling, as mice
deficient for VPAC2 showed a 75% reduction in the recruitment
of eosinophils to the airway lumen (Samarasinghe et al., 2010,
2011a). Further studies to elucidate the mechanism of eosinophil
migration using an autocrine VIP/VPAC2 signaling loop and its
effect on chemotaxis would be of great interest.

A similar observation with VIP and eosinophil migration has
been reported recently in an allergic rhinitis model (El-Shazly et al.,
2013). Eosinophils infiltrated in the allergic nasal tissue have been
shown to express high levels of VIP. Furthermore, eosinophil treat-
ment with VIP has been reported to up-regulate the expression of
CRTH2 (CD294) on human eosinophils and total CRTH2 pro-
tein (El-Shazly et al., 2013). This phenomena was shown to be
independent of VPAC1 and VPAC2 suggesting a possible role of
CRTH2 in eosinophil migration. However, the role of this receptor
in eosinophil migration in the context of fungal allergy remains to
be elucidated.

FUNGUS-ASSOCIATED PULMONARY ALLERGY AND
PATHOLOGY
DEVELOPMENT OF ALLERGIC FUNGAL RESPIRATORY DISEASE
Allergic fungal asthma is a chronic disease that is important from
both a personal and public perspective. AHR, inflammatory infil-
trates, smooth muscle increases, and fibrotic remodeling of the
bronchial architecture are features of allergic fungal asthma. Sensi-
tization and colonization by fungal species often results in chronic
architectural changes in the lung, causing long-term morbidity
(Denning et al., 2006; Knutsen and Slavin, 2011), reduced pro-
ductivity and quality of life, as well as increased costs associated
with medical treatment. Epidemiological studies in the U.S. and
Europe have associated mold sensitivity to Alternaria alternate
and Cladosporium herbarum with the development, persistence,
and severity of asthma (Knutsen et al., 2012). In addition, sensi-
tivity to A. fumigatus has been associated with severe persistent
asthma in adults (Knutsen et al., 2012). Severe asthma with fungal

sensitization (SAFS) is a new designation in pulmonary diag-
nostics and treatment (Denning et al., 2006) and experimental
models using A. fumigatus are being used to explore the course
and mechanisms at play in fungal interactions.

The majority of fungal spores counted from outdoor air sam-
ples are from the phyla Ascomycota or Basidiomycota (Horner
et al., 1995). The most commonly studied fungal allergens are
Aspergillus, Alternaria, Botrytis, Cladosporium, Epicoccum, Fusar-
ium, and Penicillium species (Knutsen et al., 2012). In a recent
study, over 40% of children who had failed combination ther-
apy with high dose inhaled corticosteroids and long-acting beta
agonists were diagnosed with SAFS (Vicencio et al., 2012). In this
study, many children (65%) displayed antibody specificity to more
than one fungal species, with Aspergillus (81.2%) and Alternaria
(68.8%) species being the most commonly associated with sensi-
tivity (Vicencio et al., 2012). Conidia (spores) are present in the
outdoor environment throughout the year in many environments
and frequently exceed the pollen population by 100- to 1000-
fold (Knutsen et al., 2012). Spores and fungal fragments found
in indoor environments originate from fungi present outdoors
and from fungi that grow in moist indoor environments such as
damp basements (Aukrust, 1979).

Aspergillus fumigatus is distributed widely in the environment.
It is a saprophytic mold with an important environmental func-
tion in carbon and nitrogen cycling (Dagenais and Keller, 2009).
As an opportunistic pathogen of plants and animals as well as
a prominent sensitizing agent in allergic respiratory diseases, A.
fumigatus is among the most well recognized and best studied
fungal species of the total estimated 3.5–5.1 million that are pre-
dicted from high throughput environmental screening (O’Brien
et al., 2005). Its hydrophobic spores are readily dispersed in the
environment and, when inhaled, are small enough to navigate the
airways of the lung far beyond the barriers of the ciliated epithe-
lium (Latge, 1999). The growth habit and physical characteristics
of A. fumigatus make it an opportunistic pathogen of humans and
an ideal carrier of aeroallergens. Cellular innate (neutrophil- and
macrophage-mediated) and adaptive (Th1-mediated) immune
responses protect against infection by Aspergillus in a normal
lung (Grazziutti et al., 1997; Traynor and Huffnagle, 2001; Beck
et al., 2006; Murdock et al., 2011), but A. fumigatus can also
induce or exacerbate allergies of the upper and lower airways, and
exposure to Aspergillus can result in invasive aspergillosis (IA) in
immunocompromised patients.

Sensitization to fungal species arises from a combination of
genetic and environmental factors, along with certain characteris-
tics of the allergen itself. Both indoor and outdoor environmental
exposure has been associated with asthma exacerbations (Pon-
gracic et al., 2010). Some studies have demonstrated a correlation
between visible mold growth in homes and asthma episodes in
children (Bundy et al., 2009; Karvonen et al., 2009). Both allergic
rhinitis and asthma have been associated with exposure to fungal
contamination in homes (Park et al., 2008). A recent study involv-
ing a quantitative meta-analysis of 33 epidemiological studies has
shown an increase of 30–50% in adverse respiratory health out-
comes in occupants because of dampness and mold exposure (Fisk
et al., 2007). Furthermore, recent reviews from the United States,
Europe, and the World Health Organization affirm that a damp
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indoor environment is a factor in asthma development (Mendell
et al., 2011).

Aspergillus-induced asthma is characterized by increases in
mature eosinophils and their progenitors within the bone marrow,
blood, and bronchi. In asthmatic patients, eosinophils generate a
variety of pro-inflammatory mediators that can disrupt epithe-
lial integrity and inflict damage to the ECM. In addition, they
stimulate the degranulation of mast cells and basophils (Reed,
1994; Makino and Fukuda, 1995; Pearlman, 1999; Hogaboam
et al., 2003; Clark et al., 2004; Williams, 2004; Kariyawasam and
Robinson, 2007; Hoselton et al., 2010; Venge, 2010; Samarasinghe
et al., 2011a,b). For these reasons, eosinophils represent potential
effector cells in the pathogenesis of allergic fungal asthma.

PATHOLOGY OF FUNGAL ALLERGIC ASTHMA
Sensitization to Aspergillus is common in atopic individuals and A.
fumigatus is responsible for approximately 16–38% of Aspergillus-
related illness in humans (Schwartz et al., 1978; Maurya et al.,
2005). In asthmatic individuals, Aspergillus sensitization, or aller-
gic bronchopulmonary aspergillosis (ABPA), is characterized by
exacerbations of asthma, recurrent transient chest radiographic
infiltrates, expectoration of thick mucus plugs, blood and pul-
monary eosinophilia, and increased total serum and fungus-
specific IgE levels. ABPA is the most common form of aller-
gic bronchopulmonary mycosis (ABPM) although other fungi,
including Candida, Penicillium, and Curvularia species, are also
implicated. Balls of fungus called aspergillomas may form fol-
lowing repeated exposure to conidia and target preexisting lung
cavities such as the healed lesions in tuberculosis patients. IA is
the most devastating of the Aspergillus-related diseases, target-
ing severely immunocompromised patients (Dagenais and Keller,
2009). In immunocompromised patients or those with previous
lung damage, A. fumigatus can germinate and its growth may
invade local blood vessels causing disseminated fungal disease with
mortality rates ranging from 40 to 90% (Lin et al., 2001; Dagenais
and Keller, 2009).

Some of the symptoms of fungal asthma are familiar: sneez-
ing, coughing, mucus production, AHR. Although the chronic
changes in the structure of the airway wall are less obvious,
they represent an accumulated dysfunction that can significantly
impact a patient’s quality of life (Lacoste et al., 1993; Jeffery, 2001;
Agrawal and Shao, 2010; Bellido-Casado et al., 2010; Hoselton
et al., 2010). As inflammation plays an important role in most
of the symptoms that are associated with fungal asthma, much
attention has been focused on delineating the mechanisms of
development and persistence of inflammation. Repeated expo-
sure to allergens like A. fumigatus results in the accumulation
of neutrophils, basophils, and mast cells which are characteris-
tic features associated with the early phase inflammatory reaction
(Galli, 2000; Hogaboam et al., 2003; Bosiger and Fehr, 2006; Ver-
straelen et al., 2008; Hoselton et al., 2010; Amin, 2012), while the
late phase reaction is characterized by the accumulation of Th2
lymphocytes (Horwitz and Busse, 1995), B lymphocytes (Horwitz
and Busse, 1995; Ghosh et al., 2012), neutrophils (Horwitz and
Busse, 1995; Hogaboam et al., 2003), macrophages (Horwitz and
Busse, 1995; Hogaboam et al., 2003; Samarasinghe et al., 2011b),
basophils (Horwitz and Busse, 1995; Smit and Lukacs, 2006), and

eosinophils (Smit and Lukacs, 2006; Campos and Pereira, 2009;
Samarasinghe et al., 2011b) in the airway tissue, including the
sub-mucosa, epithelium, and airway lumen (Horwitz and Busse,
1995; Hogaboam et al., 2003; Smit and Lukacs, 2006; Verstraelen
et al., 2008; Campos and Pereira, 2009; Fahy, 2009; Hamid and
Tulic, 2009; Hoselton et al., 2010; Samarasinghe et al., 2011a,b;
Ghosh et al., 2012).

EOSINOPHIL-ASSOCIATED DAMAGE IN ALLERGIC ASTHMA
Eosinophils have a central role in the inflammatory milieu that
is established within the asthmatic lung, and primed eosinophils
can be further activated by numerous stimuli including GM-CSF,
IL-5, and Abs (Capron et al., 1989; Kotsimbos and Hamid, 1997;
Adachi and Alam, 1998; Flood-Page et al., 2003; Bartemes et al.,
2005). GM-CSF activates and enhances eosinophil functions, such
as superoxide production, leukotriene production, phagocytosis of
serum opsonized zymosan, and Ig-induced degranulation (Kita,
2011). IL-5, apart from increasing the chemotactic response of
eosinophils, also plays a role in superoxide generation, phago-
cytosis, and immunoglobulin-induced degranulation (Kita et al.,
1992).

Eosinophils can also recognize the products of adaptive immu-
nity. Sepharose beads coated with IgG, IgA, and secretory IgA
(sIgA) have been shown to stimulate eosinophil degranulation,
and sIgA was the most effective among these Igs. The exact
mechanism to explain why sIgA is more potent is unknown
but eosinophils possess binding sites for the secretory compo-
nent. Furthermore, interaction with sIgA increases eosinophil
pro-inflammatory function (Abu-Ghazaleh et al., 1989; Monteiro
et al., 1993; Motegi and Kita, 1998). The role of IgE, which is a
hallmark of allergic disease, in mediating eosinophil activation is
controversial. Some studies have shown that eosinophils isolated
from patients with eosinophilia degranulate in response to anti-
IgE antibody (Moqbel et al., 1990) and that a high-affinity IgE
receptor is present on eosinophils from patients with eosinophilia
and various effector functions are mediated through this recep-
tor (Moqbel et al., 1990; Gounni et al., 1994). Other studies have
shown that the number of high-affinity receptors expressed on
the surfaces of eosinophils from patients with allergic diseases was
minimal and that ligation of FcεRI does not result in eosinophil
degranulation (Kita et al., 1999; Seminario et al., 1999). How-
ever, the role of high-affinity receptors in mouse models of fungal
asthma are still unclear.

Eosinophils are able to release stored mediators via three highly
regulated degranulation mechanisms, classical exocytosis, com-
pound exocytosis, and piecemeal degranulation. Degranulation
can also occur by cytolysis where the entire contents of the cell
are released during rupture (Logan et al., 2003). Classical exocyto-
sis involves the extrusion of single secretory granules but has not
been demonstrated in airway tissue (Erjefalt and Persson, 2000).
Compound exocytosis involves the fusion of multiple intracel-
lular granules followed by a focused secretion onto the target
cell at the site of adhesion (Hafez et al., 2003); while piecemeal
degranulation allows the partial and selective release of granule
contents by transferring them into small vesicles that are subse-
quently released by exocytosis. This is demonstrated by the selec-
tive release of RANTES from IFN-γ stimulated human eosinophils
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independently of both major basic protein (MBP) and eosinophil
peroxidase (EPO) release (Lacy et al., 1999).

The cytotoxic compounds contained in the granules of
eosinophils are capable of killing filarial stages. The eosinophil’s
anti-helminthic functions have been recognized since the mid-
1970s (Butterworth et al., 1975). The same granules were recog-
nized to be cytotoxic to bronchial epithelium, as well, and have
for some time been firmly associated with the immunopathology
of allergic asthma (Butterworth et al., 1975). In addition, release
of eosinophilic granules increases vascular permeability in vivo at
physiologic concentrations that are observed in pathological con-
ditions associated with allergic/fungal asthma (Piliponsky et al.,
2002; Bloemen et al., 2007). They also activate mast cell release
of pro-inflammatory mediators including histamine, eicosanoids,

and cytokines (Minnicozzi et al., 1994; Bloemen et al., 2007).
Eosinophils produce stem cell factor (SCF) and nerve growth
factor (NGF), which further support the growth and survival
of mast cells (Piliponsky et al., 2002). Eosinophils also produce
the Th2-type cytokines IL-4 and IL-13, which potently stimulate
the release of eotaxin and the production of RANTES and MCP-
1, further enhancing eosinophil recruitment. Eotaxin can induce
respiratory burst and actin polymerization in eosinophils, directly
contributing to tissue damage as well as orchestrating the contin-
ual recruitment of both eosinophils and T cells (Li et al., 1999).
A summary of different mediators released by eosinophils in the
allergic lung is delineated in Table 2.

Airway hyperresponsiveness refers to the increased ability of
the airways to narrow after exposure to non-specific stimuli. It is a

Table 2 | Mediators released by eosinophils.

Mediator General function Reference

Basic granule

proteins

Major basic protein (MBP) Respiratory epithelial desquamation Frigas et al. (1981) and Gleich (2000)

M2 receptor dysfunction Fryer and Jacoby (1998) and Takafuji et al. (1998)

Mammalian cell and parasite toxicity O’Donnell et al. (1983) and Piliponsky et al. (2002)

Stimulation of neutrophils, Gleich (2000)

Mast cells, and basophils Jacoby et al. (1993)

Eosinophil cationic protein (ECP) Bronchial Hyperresponsiveness Gleich (2000) and Weller (2008)

Leads to bronchoconstriction Rosenberg et al. (1989) and Weller (2008)

Respiratory epithelial desquamation Gleich (2000)

Cell and parasite toxicity Zheutlin et al. (1984)

Generation of radical species Kay (1988) and Gleich (2000)

Stimulation of mast cells Wu et al. (1999) and Matsunaga et al. (2000)

Eosinophil peroxidase (EPO) Suppression of lymphocyte response Takafuji et al. (1998) and Gleich (2000)

Mast cell and basophil degranulation Ayars et al. (1989) and Fryer and Jacoby (1998)

M2 receptor dysfunction Wu et al. (1999) and Gleich (2000)

Cell and parasite toxicity Wardlaw et al. (2000)

Generation of oxygen radicals Wu et al. (1999)

Chemokines CCL2, CCL3, CCL11, CCL5 and

IL-8

Migration of monocytes, macrophages,

neutrophils, T cells, and eosinophils

Yousefi et al. (1995), Ying et al. (1996), and Nakajima

et al. (1998)

Increased eosinophil survival Gleich (2000)

Increased adhesion molecules expression Weller (2008)

Airway wall remodeling Elsner and Kapp (1999)

Cytokines IL-3, IL-5, IL-9, GM-CSF, IFN-γ,

TNF-α, and IL-2

Sustained inflammation Elsner and Kapp (1999)

IL-6, IL-4, IL-13, IL-16, IL-17, IL-2,

and IL-8

Eosinophil migration, development, and

survival

Sanderson (1992) and Weller (2008)

Increased adhesion molecule expression Arm and Lee (1992) and Sanmugalingham et al. (2000)

Airway wall remodeling Nonaka et al. (1995) and Woerly et al. (2002)

Rand et al. (1991) and Minshall et al. (2000)

Lipids Cysteinyl leukotrienes, PAF,

PGD2, and PGE2

Increased mucus secretion Kupczyk and Kuna (1999) and Weller (2008)

Increased vascular permeability Kupczyk and Kuna (1999) and Gleich (2000)

Activation of eosinophils, mast cells,

basophils, neutrophils, and platelets

Kupczyk and Kuna (1999) and Gleich (2000)

Smooth muscle cell contraction Kupczyk and Kuna (1999) and Gleich (2000)

Increased adhesion molecules expression Kupczyk and Kuna (1999) and Gleich (2000)

Chemotaxis of eosinophil and neutrophil Kupczyk and Kuna (1999) and Weller (2008)
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classical feature of Aspergillus-induced allergic asthma, and AHR
severity correlates with the severity of the disease (Hogaboam
et al., 2003; Boutet et al., 2007; Dagenais and Keller, 2009;
Ramaprakash et al., 2009; Samarasinghe et al., 2010, 2011a,b).
Similarly, eosinophilic inflammation is the characteristic feature
associated with allergic asthma and it broadly correlates with
disease severity (Hogaboam et al., 2003; Boutet et al., 2007; Dage-
nais and Keller, 2009; Ramaprakash et al., 2009; Samarasinghe
et al., 2010, 2011a,b). Eosinophils that are recruited and acti-
vated after allergen challenge are believed to contribute to AHR
by the direct release of pro-inflammatory mediators and by inter-
action with other cell types. In addition, eosinophils indirectly
contribute to the development of AHR by the induction of mast
cell and basophil degranulation, leading to the local release of
prostaglandins, leukotrienes, and histamines, all of which can
induce AHR (Kay, 1983). Many studies support this long-standing
view of the eosinophils as a central effector in allergic airway dis-
ease. In C57BL/6J murine model of allergic asthma, thorough
depletion of eosinophils using an antibody against CCR3 results in
a down regulation of AHR with observed changes in the number
of other cell types (Justice et al., 2003).

The impact of eosinophils on the activation of Th2 cells is
another way that they contribute to the ongoing allergic lung
response. While the Th2-type cytokine IL-13 can induce AHR
independently of eosinophilia (Grunig et al., 1998), ablation of
eosinophils in a IL-5/eotaxin double knockout system abolishes
AHR by reducing the ability of T cells to produce IL-13 (Mattes
et al., 2002).

Airway remodeling refers to structural changes in the asthmatic
airways which occur as a result of dysfunctional repair processes
within the lung. It is characterized by the increased deposition of
ECM proteins such as collagen I and tenascin within the reticular
basement membrane and bronchial mucosa, increases in airway
smooth muscle mass, and goblet cell hypertrophy and hyperplasia
(Samarasinghe et al., 2010, 2011a,b; Girodet et al., 2011). Airway
remodeling may contribute to AHR and fixed airway flow obstruc-
tion and also contribute to the loss of lung function over time
(Kariyawasam and Robinson, 2005).

Eosinophils release a number of mediators that have been asso-
ciated with airway remodeling. The essential role of eosinophils
in airway remodeling was first described by a study in which
eosinophils were genetically ablated in mice by the deletion of
the high-affinity GATA-binding site in the GATA-1 promoter
(McMillan and Lloyd, 2004). After a period of prolonged aller-
gen challenge, wild type mice exhibited the prominent features
of airway remodeling, namely increased sub-epithelial deposition
of collagen together with airway smooth muscle cell hypertro-
phy and proliferation, but these features were abrogated in double
knockout GATA mice (Humbles et al., 2004).

Eosinophils additionally contribute to airway remodeling and
fibrosis in allergic/fungal asthma by synthesizing a number of pro-
fibrotic mediators. Eosinophils are thought to be an important
source of the pro-fibrotic cytokine TGF-β (Minshall et al., 1997;
Ohkawara et al., 2000; Cho et al., 2004; Rosenberg et al., 2013).
Studies have shown that eosinophils release TGF-β in response
to low molecular mass HA and that IL-4 and IL-5 can stimulate
eosinophils to release TGF-β in vitro (Elovic et al., 1998; Ohkawara

et al., 2000). However, other cell types also have the capability to
produce TGF-β (Boxall et al., 2006). TGF-β is able to induce ECM
protein production, and also contributes to the accumulation of
fibroblasts below the reticular basement membrane by stimulating
fibroblast proliferation (Fine and Goldstein, 1993; Richter et al.,
2001; Kenyon et al., 2003; Doherty and Broide, 2007). Eosinophils
also promote the differentiation of myofibroblasts from resident
fibroblasts (Masur et al., 1996) and also from circulating precur-
sor cells known as fibrocytes (Mori et al., 2005). In addition, the
differentiation of myofibroblasts into smooth muscle cells and
their proliferation may also be governed by TGF-β (Wicks et al.,
2006). IL-5 KO mice have significantly reduced BAL eosinophils
and airway remodeling in a model of chronic allergen challenge
(Cho et al., 2004; Tanaka et al., 2004). Both studies show a role of
eosinophil derived TGF-β in the propagation of airway remod-
eling. Furthermore, administration of an anti-TGF-β antibody
in sensitized mice followed by allergen challenge prevented the
progression of airway remodeling without altering inflammation
(McMillan et al., 2005). Treatment of asthmatic patients with an
anti-IL-5 antibody reduces the deposition of ECM proteins within
the lung with a reduction in BAL TGF-β (Flood-Page et al., 2003).
However, the precise role of TGF-β derived from eosinophils is
complicated by the fact that the TGF-β may induce the expression
of other fibrotic factors such as plasminogen activator inhibitor
while being able to act in an either synergistic or antagonistic
manner with other factors such as epidermal growth factor (Hara
et al., 2001). A summary of eosinophil function in the allergic lung
is shown in Figure 2.

EFFECT OF ANTI-EOSINOPHIL TREATMENTS
The fact that a number of chemotherapeutic agents that are effec-
tive in alleviating asthma symptoms reduce tissue eosinophilia
in allergic asthma has cemented the role of eosinophils as
immunopathologic in the minds of many scientists and clini-
cians. Glucocorticoids induce a marked eosinopenia when given
orally, and both oral and inhaled glucocorticoids reduce tissue
eosinophilia (Wardlaw et al., 2000). Oral prednisolone has been
shown to cause an amelioration of sputum eosinophilia and ECP
level in patients with severe disease exacerbations, which corre-
lates with improvement in lung function (Claman et al., 1994).
Leukotriene antagonists modestly reduce eosinophilia in the aller-
gic lung (Rothenberg and Hogan, 2006). In addition, cyclosporin
and a thromboxane A2 antagonist reduce the eosinophil count in
asthmatic airways although is not clear if their effect on eosinophils
is a major role as they have a wide range of other actions in asthma
(Claman et al., 1994; Hoshino et al., 1999; Khan et al., 2000). Oma-
lizumab, a humanized monoclonal antibody which binds to free
IgE, has been shown to block the release of inflammatory media-
tors from mast cells and reduces the infiltration of inflammatory
cells, notably eosinophils (Sarinho and Cruz, 2006).

Given the central role of IL-5 in eosinophil development and
action, a number of studies have focused on blocking IL-5 and
its effect on eosinophilia and the symptoms associated with aller-
gic asthma. Clinical trials have targeted IL-5 using 2 humanized
monoclonal Abs, SCH55700 (Schering-Plough Research Institute,
Kenilworth, NJ, USA) and mepolizumab (GlaxoSmithKline, Mid-
dlesex, UK; O’Byrne et al., 2001; Kay and Klion, 2004). In a
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FIGURE 2 | Function of eosinophils in the allergic lung. In the allergic lung eosinophils are activated to release a number of mediators which may contribute
to airway hyperresponsiveness (AHR), airway remodeling, immunomodulation, and ETosis.

randomized, double-blind study of mepolizumab, clinical symp-
toms of patients with asthma were unaffected despite a dra-
matic decline in peripheral blood eosinophilia. Most interestingly,
despite repeated administration of anti-IL-5 therapy, eosinophils
persisted in the lung tissue and in the airway (Kay and Klion,
2004). An independent trial performed with SCH55700 resulted
in a similar depletion of peripheral blood eosinophils without
improvement in clinical symptoms. These results may be related
to complexities of specific disease states (O’Byrne et al., 2001).

Eosinophils have long been reported to produce the cytokine
TGF-β in allergic asthma (Leavy, 2008). TGF-β is one of the
main effectors involved in tissue remodeling in the asthmatic lung
and is overexpressed in the allergic lung (Kay et al., 2004; Leavy,
2008). Potential therapeutic applications that modulate the TGF-β
response in fungal asthma may help to elucidate the role of both
TGF-β and eosinophils in allergic asthma.

MECHANISMS OF EOSINOPHIL-MEDIATED IMMUNITY
In the context of an allergic respiratory response to an inert
agent like pollen, animal dander, or house dust mite, eosinophils
have an entrenched identity as instigators and perpetuators of
an immunopathologic inflammatory response (Tenscher et al.,
1996). Interestingly, recent information examining the conserva-
tion of allergen sequence homology across helminth, protozoan,
and fungal organismal databases show that minor allergens gener-
ally have common homologs among these groups and also may
have homologs in common with bacterial or human proteins.
However, major allergens – defined as a specific substance that

elicits an IgE response in at least 50% of the individuals who
are allergic to the complex mixture in which the substance is
found – are often unique to the individual helminth, protozoan,
or fungal group (Santiago et al., 2012). If, then, allergy is not
merely a vestige of cross-reactivity among classes of pathogens
or host proteins, what is its role in the adaptive immune response
to helminths, protozoans, and/or fungi?

Let us look at the role of the eosinophil, not from an
immunopathologic perspective, but from that of an immune effec-
tor cell. Eosinophilia is a characteristic of many allergic diseases,
and the accumulation and degranulation of these cells in a tissue
may contribute to epithelial sloughing. The epithelium turns over
quickly in an atopic lung. Murine models of fungal allergic asthma
show a marked and dynamic metaplasic phenotype in which nearly
100% of the lining of the large airways is not ciliated columnar
cells, but mucus-producing, non-ciliated goblet cells. In an over-
whelming inhalation of fungal spores when the innate mechanisms
that typically phagocytose and eliminate fungal spores from the
airways become inundated, a mechanism by which the columnar
epithelium is replaced by sticky, mucus-producing cells may make
the most sense.

Recent work shows an important antifungal role for these gran-
ulocytes in the context of the pulmonary lumen. Eosinophils have
been reported to exert a strong inflammatory response against
germinating A. alternata resulting in killing of the fungus (Yoon
et al., 2008). This phenomena was shown to be mediated by
a β-2 integrin adhesion molecule, CD11b which is present on
eosinophils and can interact with β-glucan present on the surface
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of A. alternata (Yoon et al., 2008) further suggesting an important
antifungal role of these granulocytes.

Eosinophils, frequently associated with chronic allergic
conditions and asthma, have molecular receptors that have been
implicated in the recognition of A. fumigatus components. Tar-
geting eosinophils has proven effective at ameliorating symp-
toms in patients with severe asthma (Haldar et al., 2009). β-
d-glucan, a major component of the fungal cell wall, has been
associated with an increased peak expiratory flow variability in
children with asthma (Douwes et al., 2000). Dectin-1, which
is a receptor for β-d-glucan is present on macrophages, neu-
trophils, and dendritic cells and it transduces signals to vari-
ous cell responses with phagocytosis, oxidative burst, and pro-
duction of inflammatory mediators, including IL-8, IL-6, IL-
12, IL-18, and TNF-α (Hohl, 2008; Goodridge et al., 2009).
Recent studies report the presence of dectin-1 on human
eosinophils, indicating that fungal components can directly acti-
vate eosinophils (Goodridge et al., 2009; Kvarnhammar and
Cardell, 2012).

Chitin is another component of the fungal cell wall and has been
identified as a recognition element capable of initiating immune
responses associated with allergy and asthma (Chatterjee et al.,
2008; Van Dyken et al., 2011). Increased chitinase levels have been
associated with asthma and increased IgE levels (Chatterjee et al.,
2008). Furthermore, eosinophils are recruited in response to chitin
by a mechanism dependent on the high-affinity LTB4 receptor
(Reese et al., 2007). In summary, all the above mentioned studies
suggest an important immune effector function of eosinophils in
the context of allergic disease.

IMMUNOMODULATION
The recognition of eosinophils as complex immunomodulatory
cells has been increasing in recent years. One novel immunomod-
ulatory function of eosinophils is that they can act as antigen
presenting cells (APCs) as they express MHC Class II (Koeffler
et al., 1980; Lucey et al., 1989). In vitro, the expression of MHC
Class II is dependent on stimulation of eosinophils by GM-CSF
(Lucey et al., 1989). More immediately relevant to in vivo disease
are a series of observations that eosinophils recovered from sites of
allergic or parasitic inflammation expressed MHC Class II (Hansel
et al., 1991; Sedgwick et al., 1992; Mawhorter et al., 1993). In
patients with asthma, eosinophils isolated from sputum expressed
the MHC Class II protein HLA-DR. In mouse models of parasitic
infection, MHC Class II was upregulated in eosinophils recov-
ered from sites on infection (Mawhorter et al., 1993). MHC Class
II alone, however, is insufficient for professional antigen presen-
tation; the presence of co-stimulatory molecules is necessary for
cells to act as professional APCs, as defined by the ability to present
antigen to naive T cells, resulting in their activation (Schwartz,
2001). Ohkawara et al. (1996) demonstrated that eosinophils iso-
lated from the peripheral blood of mildly atopic subjects express
the co-stimulatory protein CD40. Two major co-stimulatory mol-
ecules, CD80 and CD86, have been shown in murine experimental
models of allergic lower airway inflammation to be expressed on
eosinophils recovered from these sites (Shi et al., 2000; MacKen-
zie et al., 2001). In addition, antigen loaded murine eosinophils
elicited proliferation of T cells in vitro that was inhibited by the

presence of anti-CD80 and anti-CD86 Abs (Tamura et al., 1996;
Shi et al., 2000).

ETosis
Under conditions of chronic inflammation in allergic asthma, neu-
trophils along with eosinophils are the first cells to be recruited
to inflammatory sites (Baggiolini, 1998; Agrawal and Shao, 2010).
Neutrophils, which are the most abundant leukocytes in the blood,
use two basic strategies to eliminate microorganisms (Guimaraes-
Costa et al., 2012). They can kill microorganisms via phagocytosis,
which involves ingestion and killing of microorganisms inside spe-
cial compartments of the cell. Alternatively, they can kill microor-
ganisms via degranulation, which consists of extravasation of the
granular contents to the extracellular milieu. In addition to these
two mechanisms, recent studies have identified a new antimicro-
bial mechanism that neutrophils can use to eliminate microbes.
This mechanism was first termed NETosis in reference to the neu-
trophil extracellular traps that are deployed into the extracellular
milieu when DNA-associated proteins are expelled from the cell
to eliminate microbes (Brinkmann et al., 2004; Brinkmann and
Zychlinsky, 2007; Guimaraes-Costa et al., 2012). NETosis has been
observed in many experimental models of fungal and bacterial
infections (Urban et al., 2006; Bruns et al., 2010; Guimaraes-Costa
et al., 2012). However, it is now recognized that other cell types
such as eosinophils and mast cells may also use extracellular traps
(von Kockritz-Blickwede et al., 2008; Yousefi et al., 2008). Mono-
cytes and macrophages have also been shown to release ETs but
to a lesser extent than that of granulocytes (Webster et al., 2010).
Since this general mechanism is now known to be shared by dif-
ferent cell types, the release of ETs was termed as ETosis, meaning
death with release of DNA extracellular traps (Guimaraes-Costa
et al., 2012).

ETosis seems to be a well-conserved mechanism in eosinophils,
as studies have shown extracellular DNA with ECP and MBP in
the innate defense mechanism against helminths and bacteria in
gastrointestinal infections (Yousefi et al., 2008). The extracellular
DNA activity (i.e., ETosis) of intact eosinophils might be partic-
ularly crucial against fungi and other pathogens at the surface of
the mucosa and may well play an important role in fungal allergic
asthma where eosinophils are present in large numbers in the air-
way lumen and the lung (Clark et al., 2004; Hoselton et al., 2010).
Further studies on the role of ETosis in impacting eosinophil func-
tion at the mucosal interface would have important implications in
understanding the role of ETosis in eosinophil activation in health
and disease.

CONCLUSION
Observations from experimental animals and asthmatic patients
suggest a direct participation of eosinophils in mediating the
pathophysiology associated with allergic/fungal asthma, although
the mechanisms by which eosinophils contribute to the patho-
genesis are rather complicated. Eosinophils have been considered
end-stage cells in immunopathology of fungal allergic asthma.
However, emerging evidence suggests that eosinophils have a
broad range of functions beyond that of a basic granulocyte in
allergic asthma and that they promote more than one aspect of
respiratory dysfunction which are associated with allergic/fungal
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asthma. The initiation and maintenance of allergic/fungal asthma
relies on the balance between the early and late phase inflammatory
response. Hence, the possibility of drugs directed at inhibiting
eosinophil migration, activation, or even outright eosinophil
ablation might prove to be effective therapeutic strategies. Fur-
thermore, a directed exploration of the factors permitting pro-
longed survival of eosinophils in tissue, even in the presence
of effective IL-5 blockade, might uncover additional eosinophil
depletion strategies. Thus, further studies using in vivo eosinophil
deficient mice and further characterization of the immunobi-
ology of eosinophils in vitro will be necessary to answer criti-
cal questions concerning the involvement of these leukocytes in

fungal asthma. Among the avenues that that might be considered
is the possibility by which eosinophils integrate and prioritize
the extra-and intracellular signals from the collective actions of
cytokines, chemokines, and the role of VIP/VPAC2/CRTH2 sig-
naling and ECM components like hyaluronic acid in eosinophil
chemotaxis/migration will allow the development of specific
therapeutic targets which can further attenuate specific com-
ponents of the fungal allergic response. Furthermore, studies
involving the recognition of epigenetic factors in regulating
the inflammatory genes in fungus-associated pulmonary aller-
gic disease may lead to new therapeutic approaches in the
future.
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