855 research outputs found
Electronic structure of nanoscale iron oxide particles measured by scanning tunneling and photoelectron spectroscopies
We have investigated the electronic structure of nano-sized iron oxide by
scanning tunnelling microscopy (STM) and spectroscopy (STS) as well as by
photoelectron spectroscopy. Nano particles were produced by thermal treatment
of Ferritin molecules containing a self-assembled core of iron oxide. Depending
on the thermal treatment we were able to prepare different phases of iron oxide
nanoparticles resembling gamma-Fe2O3, alpha-Fe2O3, and a phase which apparently
contains both gamma-Fe2O3 and alpha-Fe2O3. Changes to the electronic structure
of these materials were studied under reducing conditions. We show that the
surface band gap of the electronic excitation spectrum can differ from that of
bulk material and is dominated by surface effects.Comment: REVTeX, 6 pages, 10 figures, submitted to PR
Self Assembly of Soft Matter Quasicrystals and Their Approximants
The surprising recent discoveries of quasicrystals and their approximants in
soft matter systems poses the intriguing possibility that these structures can
be realized in a broad range of nano- and micro-scale assemblies. It has been
theorized that soft matter quasicrystals and approximants are largely
entropically stabilized, but the thermodynamic mechanism underlying their
formation remains elusive. Here, we use computer simulation and free energy
calculations to demonstrate a simple design heuristic for assembling
quasicrystals and approximants in soft matter systems. Our study builds on
previous simulation studies of the self-assembly of dodecagonal quasicrystals
and approximants in minimal systems of spherical particles with complex,
highly-specific interaction potentials. We demonstrate an alternative
entropy-based approach for assembling dodecagonal quasicrystals and
approximants based solely on particle functionalization and shape, thereby
recasting the interaction-potential-based assembly strategy in terms of
simpler-to-achieve bonded and excluded-volume interactions. Here, spherical
building blocks are functionalized with mobile surface entities to encourage
the formation of structures with low surface contact area, including
non-close-packed and polytetrahedral structures. The building blocks also
possess shape polydispersity, where a subset of the building blocks deviate
from the ideal spherical shape, discouraging the formation of close-packed
crystals. We show that three different model systems with both of these
features -- mobile surface entities and shape polydispersity -- consistently
assemble quasicrystals and/or approximants. We argue that this design strategy
can be widely exploited to assemble quasicrystals and approximants on the nano-
and micro- scales. In addition, our results further elucidate the formation of
soft matter quasicrystals in experiment.Comment: 12 pages 6 figure
Recommended from our members
Are all net generation students the same? The frequency of technology use at university
This paper looks at the results of a longitudinal study on how frequently the Net Generation students (i.e. those born in the 1980s) use technologies in their first year of university. Eight technology groupings were explored including web 2.0, social networking and computer software. The research investigated whether older Net Generation students (21-25 years) used technologies differently to the younger Net Generation students (≤20 years). Additional factors such as gender, university type (distance-learning or place-based) and nationality (UK or International) were accounted for during the study. The research found that nationality and university type were influential factors in determining the frequency of use across all technologies at the beginning of the academic year and continued to be influencing factors along with gender at the end of the academic year. Age only seemed to be an important factor for the use of Web 2.0 and social networking sites but these uses of technology were also dependent on students’ university type, gender and nationality. Thus these demographic and social factors have to be considered when analysing technology use or designing educational tools. The findings of this study have implications for research into age-related differences in students’ use of digital technologies and universities’ digital technologies training provision
The relationship between construction sector and the national economy of Sri Lanka
The causal relationship between construction and a country’s economy has received much attention in the past. However, the results provide contrasting views on the nature of this relationship. This paper therefore investigates the direction of the causal relationship between construction and the economy of a developing country, Sri Lanka. It uses empirical data for selected economic and construction indicators for the period 1990–2009. The pattern of the causal relationship was determined using Granger causality test. The findings reveal that for all indicators except construction investment, national economic activities precede that of construction. The study therefore concludes and strengthens the body of knowledge on Sri Lanka that the causal relationship between its construction sector and national economy tend towards a uni-directional relationship with the national economy inducing growth in the construction sector and not vice versa
Observational Constraints on the Modified Gravity Model (MOG) Proposed by Moffat: Using the Magellanic System
A simple model for the dynamics of the Magellanic Stream (MS), in the
framework of modified gravity models is investigated. We assume that the galaxy
is made up of baryonic matter out of context of dark matter scenario. The model
we used here is named Modified Gravity (MOG) proposed by Moffat (2005). In
order to examine the compatibility of the overall properties of the MS under
the MOG theory, the observational radial velocity profile of the MS is compared
with the numerical results using the fit method. In order to obtain
the best model parameters, a maximum likelihood analysis is performed. We also
compare the results of this model with the Cold Dark Matter (CDM) halo model
and the other alternative gravity model that proposed by Bekenstein (2004), so
called TeVeS. We show that by selecting the appropriate values for the free
parameters, the MOG theory seems to be plausible to explain the dynamics of the
MS as well as the CDM and the TeVeS models.Comment: 14 pages, 3 Figures, accepted in Int. J. Theor. Phy
Transcription of toll-like receptors 2, 3, 4 and 9, FoxP3 and Th17 cytokines in a susceptible experimental model of canine Leishmania infantum infection
Canine leishmaniosis (CanL) due to Leishmania infantum is a chronic zoonotic systemic disease resulting from complex interactions between protozoa and the canine immune system. Toll-like receptors (TLRs) are essential components of the innate immune system and facilitate the early detection of many infections. However, the role of TLRs in CanL remains unknown and information describing TLR transcription during infection is extremely scarce. The aim of this research project was to investigate the impact of L. infantum infection on canine TLR transcription using a susceptible model. The objectives of this study were to evaluate transcription of TLRs 2, 3, 4 and 9 by means of quantitative reverse transcription polymerase chain reaction (qRT-PCR) in skin, spleen, lymph node and liver in the presence or absence of experimental L. infantum infection in Beagle dogs. These findings were compared with clinical and serological data, parasite densities in infected tissues and transcription of IL-17, IL-22 and FoxP3 in different tissues in non-infected dogs (n = 10), and at six months (n = 24) and 15 months (n = 7) post infection. Results revealed significant down regulation of transcription with disease progression in lymph node samples for TLR3, TLR4, TLR9, IL-17, IL-22 and FoxP3. In spleen samples, significant down regulation of transcription was seen in TLR4 and IL-22 when both infected groups were compared with controls. In liver samples, down regulation of transcription was evident with disease progression for IL-22. In the skin, upregulation was seen only for TLR9 and FoxP3 in the early stages of infection. Subtle changes or down regulation in TLR transcription, Th17 cytokines and FoxP3 are indicative of the silent establishment of infection that Leishmania is renowned for. These observations provide new insights about TLR transcription, Th17 cytokines and Foxp3 in the liver, spleen, lymph node and skin in CanL and highlight possible markers of disease susceptibility in this model
A novel 3D pillar-layered metal-organic framework: Pore-size-dependent catalytic activity and CO2/N-2 affinity
The structure-activity relationship plays the main role in the applicability of Metal-organic Frameworks (MOFs) in different areas including catalysis. Regarding to this herein a novel pillar-layered MOF (TMU-52) that is isostructural to our recently reported TMU-25 is introduced. The structure of this framework was analyzed using X-ray crystallography, FT-IR spectroscopy, Thermogravimetric and elemental analyses. According to the similar organic and inorganic backbone, a comparative study was done on catalytic manner of TMU-25 and TMU-52 toward in aldol-type condensation reaction. TMU-52 was designed through replacing the biphenyl core in the pillar linker of TMU-25 with phenyl group as a better candidate heterogeneous catalysis. The selectivity of the TMU-52 was higher owing to its narrower channels. CO2/N-2 affinity of these structures was also investigated
Monocyte receptors for fibronectin characterized by a monoclonal antibody that interferes with receptor activity.
Linking genomics and metabolomics to chart specialized metabolic diversity
Microbial and plant specialized metabolites constitute an immense chemical diversity, and play key roles in mediating ecological interactions between organisms. Also referred to as natural products, they have been widely applied in medicine, agriculture, cosmetic and food industries. Traditionally, the main discovery strategies have centered around the use of activity-guided fractionation of metabolite extracts. Increasingly, omics data is being used to complement this, as it has the potential to reduce rediscovery rates, guide experimental work towards the most promising metabolites, and identify enzymatic pathways that enable their biosynthetic production. In recent years, genomic and metabolomic analyses of specialized metabolic diversity have been scaled up to study thousands of samples simultaneously. Here, we survey data analysis technologies that facilitate the effective exploration of large genomic and metabolomic datasets, and discuss various emerging strategies to integrate these two types of omics data in order to further accelerate discovery
Negative differential resistance in molecular junctions: application to graphene ribbon junctions
Using self-consistent calculations based on Non-Equilibrium Green's Function
(NEGF) formalism, the origin of negative differential resistance (NDR) in
molecular junctions and quantum wires is investigated. Coupling of the molecule
to electrodes becomes asymmetric at high bias due to asymmetry between its
highest occupied molecular orbital (HOMO) and lowest unoccupied molecular
orbital (LUMO) levels. This causes appearance of an asymmetric potential
profile due to a depletion of charge and reduction of screening near the source
electrode. With increasing bias, this sharp potential drop leads to an enhanced
localization of the HOMO and LUMO states in different parts of the system. The
reduction in overlap, caused by localization, results in a significant
reduction in the transmission coefficient and current with increasing bias. An
atomic chain connected to two Graphene ribbons was investigated to illustrate
these effects. For a chain substituting a molecule, an even-odd effect is also
observed in the NDR characteristics.Comment: 8 pages, 8 figure
- …
