12 research outputs found

    The dispersal of phytoplankton populations by enhanced turbulent mixing in a shallow coastal sea

    Get PDF
    A single tidal cycle survey in a Lagrangian reference frame was conducted in autumn 2010 to evaluate the impact of short-term, episodic and enhanced turbulent mixing on large chain-forming phytoplankton. Observations of turbulence using a free-falling microstructure profiler were undertaken, along with near-simultaneous profiles with an in-line digital holographic camera at station L4 (50° 15' N 4° 13' W, depth 50 m) in theWestern English Channel. Profiles fromeach instrumentwere collected hourly whilst following a drogued drifter. Results from an ADCP attached to the drifter showed pronounced vertical shear, indicating that the water column structure consisted of two layers, restricting interpretation of the Lagrangian experiment to the upper ̃25 m. Atmospheric conditions deteriorated during the mid-point of the survey, resulting in values of turbulent dissipation reaching a maximum of 10-4Wkg-1 toward the surface in the upper 10 m. Chain-forming phytoplankton >200 μm were counted using the data from the holographic camera for the two periods, before and after the enhanced mixing event. As mixing increased phytoplankton underwent chain breakage,were dispersed by advection through their removal from the upper to lower layer and subjected to aggregation with other suspended material. Depth averaged counts of phytoplankton were reduced from a maximum of around 2050 L-1 before the increased turbulence, to 1070 L-1 after, with each of these mechanisms contributing to this reduction. These results demonstrate the sensitivity of phytoplantkon populations to moderate increases in turbulent activity, yielding consequences for accurate forecasting of the role played by phytoplankton in climate studies and also for the ecosystem in general in their role as primary producers. © 2014 Elsevier B.V. All rights reserved

    Seabird diving behaviour reveals the functional significance of shelf-sea fronts as foraging hotspots

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Oceanic fronts are key habitats for a diverse range of marine predators, yet how they influence fine-scale foraging behaviour is poorly understood. Here, we investigated the dive behaviour of northern gannets Morus bassanus in relation to shelf-sea fronts. We GPS tracked 53 breeding birds and examined the relationship between 1901 foraging dives (from time-depth recorders) and thermal fronts (identified via Earth Observation composite front mapping) in the Celtic Sea, North-East Atlantic. We (1) used a habitat use-availability analysis to determine whether gannets preferentially dived at fronts, and (2) compared dive characteristics in relation to fronts to investigate the functional significance of these oceanographic features. We found that relationships between gannet dive probabilities and fronts varied by frontal metric and sex. Whilst both sexes were more likely to dive in the presence of seasonally persistent fronts, links to more ephemeral features were less clear. Here, males were positively correlated with distance to front and cross-front gradient strength, with the reverse for females. Both sexes performed two dive strategies: shallow V-shaped plunge dives with little or no active swim phase (92% of dives), and deeper U-shaped dives with an active pursuit phase of at least three seconds (8% of dives). When foraging around fronts, gannets were half as likely to engage in U-shaped dives compared with V-shaped dives, independent of sex. Moreover, V-shaped dive durations were significantly shortened around fronts. These behavioural responses support the assertion that fronts are important foraging habitats for marine predators, and suggest a possible mechanistic link between the two in terms of dive behaviour. This research also emphasises the importance of cross-disciplinary research when attempting to understand marine ecosystems.This work was funded by a PhD studentship to SLC by the Natural Environment Research Council (NERC; NE/J500380/1), Natural Resources Wales (Seabirds Cymru) and a NERC grant (NE/H007466/1)

    The distribution of deep-sea sponge aggregations (Porifera) in relation to oceanographic processes in the Faroe-Shetland Channel.

    Get PDF
    Deep-sea sponge aggregations have been identified as potential Vulnerable Marine Ecosystems under United Nations General Assembly Resolution 61/105. Understanding the distribution of these habitats is critical to future spatial management efforts, and central to this understanding are quantitative data on the environmental drivers of that distribution. Accumulations of large suspension feeders are hypothesised to aggregate in regions of internal wave formation. The causal link is thought to be an increase in the supply of food related to the incidence of internal waves, which results in resuspension of particulate organic matter on which the sponges feed. There is, however, almost no empirical evidence to support this hypothesis for deep-sea sponge aggregations, although there is strong circumstantial evidence. We tested the relationship between sponge density and 1) temperature range (as a measure of internal wave presence in this region), and 2) optical backscatter (a measure of particulate flux) for a known sponge aggregation in the Faroe-Shetland Channel where internal wave interaction with the slope is further well-documented. 25 benthic video transects, ranging from 422 to 979 m water depth were conducted in the study region. 225 images were analysed and all taxa identified to morphotypes and quantified. Temperature and optical backscatter data were drawn from archived CTD data, and data from long term (4 months) and 2 seasonal short term (11 days) mooring deployments from the region. A generalised linear model was used to test the relationship between sponge density and temperature range (ΔT), and sponge density and optical backscatter. The results showed a statistically significant positive relationship between sponge density and temperature range, with the highest sponge densities occurring at depths of greatest temperature range. They showed a statistically significant positive relationship between sponge density and optical backscatter for long term and one short term seasonal deployment (Sep–Oct), but a weak negative relationship for the other short term mooring deployment (April-May). We conclude that sponge aggregations in the Faroe-Shetland Channel are associated with slope regions that are subjected to abrupt and pronounced changes in temperature due to intensified internal wave activity over the slope between depths of 400–600 and that lead to intensified near-bed currents and elevated resuspension of particulate. Our data provide empirical evidence of the relationship between internal wave processes and deep-sea sponge aggregations. These data modify current theory on drivers of deep sea sponge aggregation distribution, suggesting aggregations also occur directly within regions of internal wave breaking, rather than simply proximal to these regions

    Temporal patterns in habitat use by small cetaceans at an oceanographically dynamic marine renewable energy test site in the Celtic Sea

    Get PDF
    Shelf-seas are highly dynamic and oceanographically complex environments, which likely influences the spatio-temporal distributions of marine megafauna such as marine mammals. As such, understanding natural patterns in habitat use by these animals is essential when attempting to ascertain and assess the impacts of anthropogenically induced disturbances, such as those associated with marine renewable energy installations (MREIs). This study uses a five year (2009–2013) passive acoustics (C-POD) dataset to examine the use of an oceanographically dynamic marine renewable energy test site by small cetaceans, dolphins (unspecified delphinids) and harbour porpoises Phocoena phocoena, in the southern Celtic Sea. To examine how temporal patterns in habitat use across the site related to oceanographic changes occurring over broad seasonal scales as well as those driven by fine scale (bi-weekly) localised processes (that may be masked by seasonal trends), separate analyses were conducted using (1) all daily animal detection rates spanning the entire five year dataset and (2) daily animal detection rates taken only during the summer months (defined as mid-June to mid-October) of 2010 (when continuous monitoring was carried out at multiple discrete locations across the site). In both instances, generalised additive mixed effects models (GAMMs) were used to link detection rates to a suite of environmental variables representative of the oceanography of the region. We show that increased harbour porpoise detection rates in the late winter/early spring (January–March) are associated with low sea surface temperatures (SST), whilst peaks in dolphin detection rates in the summer (July–September) coincide with increased SSTs and the presence of a tidal-mixing front. Moreover, across the summer months of 2010, dolphin detection rates were found to respond to small scale changes in SST and position in the spring-neap cycle, possibly reflective of a preference for the stratified waters immediately offshore of the front. Together, these findings suggest that habitat use by small cetaceans within shelf-seas is temporally variable, species specific and likely driven by complex bottom-up processes. As such, the effective conservation management of shelf-seas requires that we understand the dynamic complexities of these systems and the species that inhabit them. In particular, we emphasise the need for a good understanding of the natural drivers of habitat use by marine megafauna before the potential impacts of anthropogenically induced disturbances, such as those associated with the construction, maintenance and operation of MREIs, can be assessed

    Biological controls on resuspension and the relationship between particle size and the Kolmogorov length scale in a shallow coastal sea

    No full text
    Measurements of suspended particle matter (SPM) and turbulence have been obtained over five tidal surveys during spring and summer 2010 at station L4 (5025 degrees N 04.22 degrees W, depth 50 m), in the Western English Channel. The relationship between turbulence intensity and bed stress is explored, with an in-line holographic imaging system evaluating the extent to which material is resuspended. Image analysis allows for the identification of SPM above a size threshold of 200 pm, capturing particle variability across tidal cycles and the two seasons. Dissipation of turbulent kinetic energy, which exceeds 10(-5) W kg(-1), yields maximum values of bed stress of between 0.17 and 0.20 N m(-2), frequently resulting in the resuspension of material from the bed. Resuspension is shown to promote aggregation of SPM into flocs, where the size of such particles is theoretically determined by the Kolmogorov microscale, l(k). During the spring surveys, flocs of a size larger than lk were observed, though this was not repeated during summer. It is proposed that the presence of gelatinous, biological material in spring allows flocculated particles to exceed l(k). This suggests that under specific circumstances, the limiting factor on the growth of flocculated SPM is not only turbulence, as previously thought, but the presence or absence of certain types of biological particle

    The role of advection in the distribution of plankton populations at a moored 1-D coastal observatory

    Get PDF
    The degree to which advection modulates the distribution of plankton populations at a 1-D coastal observatory was assessed at station L4 in the western English Channel (50°15′N 4°13′W, depth 50 m), part of the Western Channel Observatory (WCO). Five tidal-cycle surveys were conducted, three in spring and two in summer 2010. Observations of the physical characteristics of L4 were obtained by using a moored acoustic doppler current profiler (ADCP) and a free-falling microstructure sensor (MSS). The moored ADCP highlighted the presence of vertical shear, with typical values of U during spring tides of ∼0.5 m s−1 at the surface and ∼0.2 m s−1 at the bed. The distribution of phyto- and zooplankton populations above a size threshold of 200 μm were examined using an in-line holographic imaging system, the Holocam. Variability in time as well as depth is a common feature throughout each of the surveys, with examples of recorded numbers of phytoplankton that ranged between 1300 L−1 and 2300 L−1 at the same depth but at different points within the tidal cycle. Further, at the same points in the tidal cycle the number of recorded zooplankton was also seen to vary, specifically with the identification of gelatinous planula in spring that increased the observed number to maximums of between 140 L−1 and 220 L−1 in the upper layer, considerably higher that the corresponding WP-2 net counts for a similar period. Specific aspects of the movement and transfer of plankton relating to advection and interaction with the pycnocline are identified, both across tidal cycles and seasons
    corecore