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ABSTRACT 10	

Mid-latitude (~30-60o) seasonally stratifying shelf-seas support a high abundance and diversity of 11	

marine predators such as marine mammals and seabirds. However, anthropogenic activities and 12	

climate change impacts are driving changes in the distributions and population dynamics of these 13	

animals, with negative consequences for ecosystem functioning.  Across mid-latitude shelf-seas, 14	

marine mammals and seabirds are known to forage at a number of oceanographic habitats that 15	

structure the spatio-temporal distributions of prey.  Knowledge of these and the bio-physical 16	

mechanisms driving such associations are needed to improve marine management and policy.  Here, 17	

we provide a concise and easily accessible guide for both researchers and managers of marine systems 18	

on the predominant oceanographic habitats that are favoured for foraging by marine mammals and 19	

seabirds across mid-latitude shelf seas.  We (1) identify and describe key discrete physical features 20	

present across the continental shelf, working inshore from the shelf-edge to the shore line, (2) provide 21	

an overview of findings relating to associations between these habitats and marine mammals and 22	
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seabirds, (3) identify areas for future research and (4) discuss the relevance of such information to 23	

conservation management.  We show that oceanographic features preferentially foraged at by marine 24	

mammals and seabirds include shelf-edge fronts, upwelling and tidal-mixing fronts, offshore banks 25	

and internal waves, regions of stratification, and topographically complex coastal areas subject to 26	

strong tidal flow.  Whilst associations were variable across taxa and through space and time, in the 27	

majority of cases interactions between bathymetry and tidal currents appear to play a dominant role, 28	

alongside patterns in seasonal stratification and shelf-edge upwelling.  We suggest that the ecological 29	

significance of these bio-physical structures stems from a capacity to alter the densities, distributions 30	

(both horizontally and vertically) and behaviours of prey in a persistent and/or predictable manner 31	

that increases accessibility for predators, and likely enhances foraging efficiency.  Future 32	

conservation management should aim to preserve and protect these habitats.  This will require 33	

adaptive and holistic strategies that are specifically tailored to the characteristics of an oceanographic 34	

feature, and where necessary evolve through space and time. Improved monitoring of animal 35	

movements and bio-physical conditions across shelf-seas would aid in achieving this.  Areas for 36	

future research include multi- disciplinary/trophic studies of the mechanisms linking oceanographic 37	

habitats, prey and marine mammals and seabirds (which may also elucidate the importance of lesser 38	

studied features such as bottom fronts and Langmuir circulation cells), alongside a better 39	

understanding of how predators perceive their environment and develop foraging strategies during 40	

immature/juvenile stages.  Estimates of the importance of bio-physical processes at a population level 41	

should also be obtained.  Such information is vital to ensuring the future health of these complex 42	

ecosystems, and can be used to assess how anthropogenic activities and changes in the environment 43	

will impact the functioning and spatio-temporal dynamics of these bio-physical features and their use 44	

by marine predators.	45	

KEYWORDS: Habitat selection · Foraging ecology · Bio-physical coupling · Conservation 46	

management · Marine mammals · Oceanography · Seabirds 47	
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1 Introduction 48	

Mid-latitude (~30-60o) seasonally stratifying shelf seas cover less than 8% of the world’s oceans, yet 49	

account for ~15% of marine global productivity (Muller-Karger et al., 2005; Simpson and Sharples, 50	

2012).  These regions support high abundances of species above the base of the food web, which 51	

includes a diversity of marine predators such as marine mammals and seabirds.  However, they are 52	

currently going through a period of rapid alteration, driven by the combined and cumulative effects 53	

of a range of anthropogenic activities and impacts such as climate change, fisheries and the 54	

development of marine renewables (Walther et al., 2002; Frid et al., 2005; Witt et al., 2012; Avila et 55	

al., 2018; Kroodsma et al., 2018).  As a result, many populations of marine mammals and seabirds in 56	

shelf-seas have shifted in distribution (Bertrand et al., 2012; Hazen et al., 2013) or suffered severe 57	

declines (Cury et al., 2011; McCauley et al., 2015; Paleczny et al., 2015), which has negatively 58	

impacted the functioning of these systems as a whole (Heithaus et al., 2008).  Addressing this issue 59	

represents a major environmental conservation challenge requiring response at the policy level 60	

alongside informed management practices. 61	

Marine mammals and seabirds meet their requirements for survival, growth and reproduction through 62	

the exploitation of prey resources from their surrounding environment.  Whilst typically these animals 63	

are highly mobile and capable of ranging vast distances (Block et al., 2011), foraging efforts are often 64	

concentrated over localised spatio-temporal scales (Hastie et al., 2004; Sydeman et al., 2006; 65	

Weimerskirch, 2007). Such heterogeneity in distributions is expected to match the organisation of 66	

prey, but this has proved surprisingly challenging to demonstrate (Logerwell et al., 1998; Fauchald 67	

and Erikstad, 2002; Gremillet et al., 2008; Torres et al., 2008), particularly at finer scales which may 68	

be impacted by confounding factors (Schneider and Piatt, 1986; Hunt et al., 1992; Mehlum et al., 69	

1999; Swartzman and Hunt, 2000; Vlietstra, 2005; Fauchald, 2009). Increasing evidence suggests the 70	

behavioural patterns of marine predators (particularly those feeding on plankton and/or forage and 71	

pelagic fish) are linked to bio-physical oceanographic processes that structure the accessibility and 72	
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availability of these lower trophic level food sources (Cox et al., 2013; Bertrand et al., 2014; 73	

Woodson and Litvin, 2015; McInnes et al., 2017), and thus influence foraging efficiency/success 74	

(Boyd et al., 2016).  Across shelf-sea environments, a number of discrete habitat features have been 75	

identified as important locations that host enhanced foraging opportunities, including fronts, offshore 76	

banks where internal waves propagate and tidally dependent island wakes (Hunt and Schneider, 1987; 77	

Hunt et al., 1999; Bost et al., 2009; Bertrand et al., 2014; Scales et al., 2014a; Benjamins et al., 2015).  78	

Given the tight energy constraints of many marine mammals and seabirds (Cairns, 1988), these 79	

structures can be thought of as critical habitat features. 80	

Knowledge of the bio-physical processes that underlie links between oceanographic habitat features 81	

and marine mammal and seabird foraging is vital to obtaining a comprehensive understanding of 82	

marine ecosystem functioning.  This will prove invaluable as we move towards implementing holistic 83	

management methods, that consider ecosystems in their entirety and aim to incorporate more 84	

precautionary conservation measures (Arkema et al., 2006; Hooker et al., 2011).  Early synthesises 85	

and reviews have outlined the prominent bio-physical processes occurring across ocean environments 86	

and how these are linked to the spatio-temporal distributions of seabirds (e.g. Hunt, 1990, 1991, 1997; 87	

Hunt et al., 1999), but no known equivalent review exists for marine mammals.  Over the past 10-15 88	

years, methodological and technological advances have substantially improved the way in which the 89	

marine environment is studied, both in terms of how we collect data (Cooke et al., 2004; Hunt and 90	

Wilson, 2012; Brown et al., 2013; Waggitt and Scott, 2014; Photopoulou et al., 2015; Benoit-Bird 91	

and Lawson, 2016; Macaulay et al., 2017) and quantitatively analyse it (Redfern et al., 2006; 92	

Wakefield et al., 2009; Brown et al., 2013; Carter et al., 2016; Bennison et al., 2017).  As such, our 93	

knowledge of links between oceanographic habitats and marine predators has substantially improved, 94	

and a more mechanistic understanding of how these features aid marine mammal and seabird 95	

foraging, and function as dynamic habitats is being attained.  Although, more recent regional and/or 96	

feature specific reviews have been published (e.g. fronts; Scales et al., 2014a, southern ocean fronts 97	
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and eddies; Acha et al., 2004; Bost et al., 2009, and tidal stream environments; Benjamins et al., 98	

2015), as of yet, a paper which encompasses links between both marine mammals and seabirds with 99	

the full range of oceanographic habitat features that occur across mid-latitude, seasonally stratifying 100	

shelf-seas as a whole is lacking.  Such knowledge is still yet to be fully integrated into studies 101	

examining behavioural patterns and habitat use by marine predators alongside marine management 102	

strategies (Tremblay et al., 2009; Fourcade et al., 2018), and so it is particularly pertinent that this is 103	

addressed, not least because the diverse human use of shelf-seas is accelerating impacts on these 104	

ecosystems.  We feel it important to synthesise the broad and diverse habitat features present in this 105	

environment to facilitate conservation management and ecological research, and drive a policy 106	

response to this crisis.	107	

In light of this, we provide a concise and easily accessible guide for both researchers and managers 108	

of marine systems on the predominant oceanographic habitats that are favoured for foraging by 109	

marine mammals and seabirds across mid-latitude shelf seas.  We identify and describe key discrete 110	

physical features present across the continental shelf, working inshore from the shelf-edge to the 111	

shore line (Figures 1 & 2, Table 1), and discuss links to marine mammals and seabirds.  We then 112	

highlight the key characteristics of these features that make them attractive as foraging habitats.  We 113	

identify areas where knowledge is lacking and make recommendations for the direction of future 114	

research.  Finally, we discuss how these insights can be used to improve the conservation management 115	

of shelf-sea environments.  Our aim is to provide a concise overview, in a format that is broken down 116	

into feature specific sections accessible to non-oceanographers.  In doing so we hope to encourage 117	

both researchers and conservation managers of marine systems to move towards the identification, 118	

bio-physical characterisation and incorporation of discrete oceanographic habitat structures that 119	

promote prey availability into future studies and management strategies. 120	

2 The shelf edge 121	
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The shelf edge marks the transition zone from the comparatively shallow (usually less than 200m) 122	

waters of the continental shelf to the deep abyssal plains (where depths exceed 2000m) of the open 123	

ocean (Simpson and Sharples, 2012).  This region is relatively narrow, with a typical lateral distance 124	

of around 50km, and so generally characterised by a steep sloping profile (e.g. the European 125	

continental shelf-edge).  Along the shelf edge, dependent upon geographical location (e.g. bordering 126	

a major eastern boundary current), shelf-edge fronts and wind-driven upwelling fronts support high 127	

levels of primary and secondary productivity which attract a diversity of marine mammals and 128	

seabirds. 129	

2.1 Shelf-edge fronts 130	

Shelf-edge fronts (also shelf-break and shelf-slope fronts) occur at the interface between on-shelf and 131	

open-ocean waters (Figure 1), and are marked by strong gradients in salinity, and sometimes 132	

temperature.  As currents, pushed onto the shelf via tidal forcing, are interrupted by the steep sloping 133	

topographic profiles of these regions, upwelling pushes the surface mixed layer above the critical 134	

depth for phytoplankton growth (Fournier et al., 1979), whilst simultaneously facilitating exchange 135	

with the nutrient rich waters of the open-ocean’s bottom boundary layer (Springer et al., 1996; Ryan 136	

et al., 1999).  High levels of primary productivity are typically sustained, sometimes perennially 137	

(Fournier et al., 1979), attracting planktivorous grazers alongside large numbers of pelagic fish 138	

(Podesta et al., 1993; Sabatés and Olivar, 1996; Springer et al., 1996; Genin, 2004; Greer et al., 2015).  139	

Dependent upon the lateral extent and topography of the adjacent continental shelf, these features 140	

may be far from land, and so relatively inaccessible to those foragers constrained to land-based 141	

colonies (e.g. breeding seabirds and some seals).  Links to marine predators are dominated by those 142	

taxa capable of performing far-ranging foraging trips (e.g. black petrel Procellaria parkinsoni, fork-143	

tailed storm petrel Oceanodroma furcate, northern fulmar Fulmarus glacialis and short-tailed 144	

albatross Phoebastria albatrus; Schneider, 1982; Stone et al., 1995; Piatt et al., 2006; Freeman et al., 145	

2010) or that are not restricted to a central location for breeding (e.g. Cuvier’s beaked whale Ziphius 146	
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cavirostris, Risso’s dolphin Grampus griseus, sperm whale Physeter microcephalus and spotted 147	

dolphin Stenella attenuata; Baumgartner, 1997; Waring et al., 2001; Pinedo et al., 2002; Azzellino 148	

et al., 2008; Scott and Chivers, 2009).  Where the shelf edge is nearer to land (e.g. the Skagerrak), 149	

shorter ranging breeding species may forage at these features (e.g. little auk Alle alle; Skov and 150	

Durinck, 1998).  Shelf-edge fronts may also be important to non-breeding individuals in the late 151	

summer, autumn and winter, when constraints to a central land-based breeding location no longer 152	

apply (e.g.  Cory’s shearwater Calonectris borealis and little auk; Haney and McGillivary, 1985a; 153	

Brown, 1988).	154	

2.2 Wind-driven upwelling fronts 155	

Along the major eastern boundary currents of western North America (the California current), Peru 156	

(the Humboldt current) and west Africa (the Benguela, Canary and Somali currents), strong cross 157	

winds in combination with Coriolis forcing and Ekman transport form intense upwelling systems, 158	

which sustain some of the highest levels of primary and secondary productivity globally (Longhurst 159	

et al., 1995).  In other regions, similarly structured upwelling systems may occur (e.g. the southern 160	

shelf of Australia and along the eastern boundary of the Labrador Current; Kinsella et al., 1987; 161	

Kampf et al., 2004), albeit on a smaller and less impressive spatio-temporal scale. 162	

Along, or immediately inshore of the shelf-edge, upwelling fronts mark where these systems meet 163	

on-shelf coastal waters.  Strong convergent flows accumulate and retain the phytoplankton biomass 164	

and small nekton generated by adjacent upwelling systems (Bjorkstedt et al., 2002), which attracts 165	

large numbers of pelagic and forage fish (Ainley et al., 2005; Reese et al., 2011; Watson et al., 2018).  166	

Due to the typically narrow extent of adjacent shelves (e.g. western Africa and western America’s), 167	

upwelling fronts are often proximate to land.  As such, the prey aggregating effects of these features 168	

are exploited by a diverse range of marine predators (Bourne and Clark, 1984; Forney and Barlow, 169	

1998; Hoefer, 2000; Camphuysen and van der Meer, 2005; Croll et al., 2005; Tynan et al., 2005; 170	
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Ainley et al., 2009) that includes those individuals constrained to land-based colonies or a shoreward 171	

distribution (e.g. lactating New Zealand fur seals Arctocephalus forsteri and Northern elephant seals 172	

Mirounga angustirostris alongside numerous breeding seabirds such as Cape gannet Morus capensis, 173	

common guillemot Uria aalge, Humboldt penguin Spheniscus humboldti, kelp gull Larus 174	

dominicanus, Peruvian booby Sula variegata, rhinoceros auklet Cerorhinca monocerata and a 175	

number of phalarope species; Briggs et al., 1984; Croll, 1990; Weichler et al., 2004; Ainley et al., 176	

2005; Crocker et al., 2006; Baylis et al., 2008; Sabarros et al., 2014).	177	

The intensities of upwelling systems and their associated fronts can vary seasonally and/or inter-178	

annually with climatic conditions and wind patterns (Kinsella et al., 1987; Bograd et al., 2009a), 179	

which can substantially impact the structuring of surrounding ecosystems with concomitant 180	

consequences for marine mammals and seabirds (Schneider and Methven, 1988; Schneider, 1994; 181	

McGowan et al., 1998; Abraham and Sydeman, 2004; Wolf et al., 2009; Black et al., 2011; Woodson 182	

and Litvin, 2015).  For example, in years when decreased upwelling intensity reduces the availability 183	

of high quality foraging habitats around frontal zones (e.g. with the El Nino Southern Oscillation; 184	

ENSO), breeding seabirds along the west coast of the America’s display signs of reduced body 185	

condition (e.g. common guillemots; Croll, 1990), whilst others (e.g. Cassin’s Auklet Ptychoramphus 186	

aleuticus, Humboldt penguins and marbled murrelet Brachyramphus marmoratus) extend their 187	

foraging trips, which may result in reduced reproductive success (Becker and Beissinger, 2003; 188	

Hennicke and Culik, 2005; Bertram et al., 2017). 189	

3 The mid-shelf: from the shelf-edge to near-shore coastal waters 190	

The mid-shelf extends from the shelf-edge to near-shore coastal waters (Figure 1) with topographic 191	

depths typically ranging from around 50m to 200m.  In mid-latitude, temperate zones this region 192	

stratifies seasonally between late spring and autumn when increased solar irradiation heats surface 193	

waters sufficiently to increase buoyancy levels and overcome tidal and wind-driven mixing (Pingree, 194	
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1975; Pingree et al., 1976; Simpson and Sharples, 2012).  A two-layer system is formed, characterised 195	

by a surface mixed layer of warm, nutrient deficient water and a bottom boundary layer of dense, 196	

cold nutrient rich water (Figure 1).  This structuring underlies a number of oceanographic processes 197	

that appear important to marine mammals and seabirds, particularly in areas where the spatial extent 198	

of the continental on-shelf region is large and tidal ranges considerable (e.g. the Canadian, European, 199	

northeast USA continental shelf and the eastern Bering Sea Shelf).   200	

3.1 The annual spring bloom 201	

The development/onset of stratification in the spring drives a significant annual phytoplankton bloom 202	

(Pingree et al., 1976; Sambrotto et al., 1986; Sharples et al., 2006).  The timing of this bloom varies 203	

annually as a result of climatic fluctuations in air temperature/solar irradiation and wind stress 204	

(Sharples et al., 2006), which can lead to a temporal mismatch between fish spawning and plankton 205	

production (match-mismatch hypothesis; Cushing, 1975).  This can have bottom-up impacts at higher 206	

trophic levels by influencing fish recruitment (Beaugrand and Kirby, 2010; Sigler et al., 2016) and 207	

food availability (Durant et al., 2007), and has been shown to effect the breeding success of a number 208	

of seabirds including Atlantic puffin Fratercula arctica, black-legged kittiwake Rissa tridactyla, 209	

common guillemot and rhinoceros auklet off the coast of British Columbia, and across the North and 210	

Norwegian Seas (Durant et al., 2006; Scott et al., 2006; Borstad et al., 2011).  Such impacts 211	

sometimes occur at a lag of 1-2 years to underlying shifts in environmental conditions (Zador et al., 212	

2013).  Changes in prey availability have also been linked to spatial variability in the distribution of 213	

the spring bloom alongside the oceanographic conditions within which it occurs (Table 2).  For 214	

example, across the eastern Bering Sea, in years when the spring bloom occurs in warmer offshore 215	

waters (due to earlier sea ice retreat; Hunt and Stabeno, 2002), changes in the abundance, 216	

composition, distribution and survival of predominant plankton and juvenile fish species results in 217	

shifts in the diets and distributions of several seabird populations (Springer et al., 2007; Renner et al., 218	
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2016; Hunt et al., 2018), which can result in demographic impacts (Satterthwaite et al., 2012; Zador 219	

et al., 2013).  	220	

3.2 Vertical interfaces in offshore stratified regions (the pycnocline) and sub-surface productivity 221	

Following the spring bloom, productivity within the mid-shelf region redistributes and is maintained 222	

by a number of oceanographic processes (Richardson et al., 2000; Weston et al., 2005).  An important 223	

feature is the vertical interface between the low nutrient, warm surface mixed layer and the cool, 224	

dense, high nutrient bottom boundary layer, where steep vertical gradients in density form a 225	

pycnocline, which can alternatively be referred to as the thermocline (when vertical density gradients 226	

are temperature driven) or the halocline (when vertical density gradients are driven by changes in 227	

salinity).  This structure acts as a barrier between surface and bottom boundary waters by inhibiting 228	

the vertical transport of nutrients and plankton (Stepputtis et al., 2011).  In some instances, the 229	

pcynocline may be composed of both a thermocline and halocline.  Alternatively, the effects of 230	

vertical changes in temperature and salinity can cancel each other out, resulting in no pcynocline.  231	

Across shelf-seas, offshore seasonal summer stratification is predominantly thermally driven (with a 232	

temperature driven pycnocline; Simpson and Sharples, 2012), although in regions subject to high 233	

levels of freshwater input (e.g. the Skagerrak between the North and Baltic Seas; Skov and Durinck, 234	

2000) saline gradients may also be important.  The majority of studies investigating interactions 235	

between marine predators and the pycnocline have focused on links with temperature delineated 236	

thermoclines (e.g. Takahashi et al., 2008; Kokubun et al., 2010; Pelletier et al., 2012; Nordstrom et 237	

al., 2013; ven Eeden et al., 2016).	238	

High levels of sub-surface primary productivity often concentrate around the pycnocline, and can 239	

account for over 50% of water column productivity (Weston et al., 2005), alongside ~30% of total 240	

annual productivity (Richardson and Christoffersen, 1991).  This is maintained through the summer 241	

months by two sources of episodic mixing events, each of which results in an influx of nutrients from 242	
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the bottom boundary layer that enhance productivity.  First, increased tidal currents during spring 243	

tides generate turbulent dissipation (due to friction with the sea bed), that may extend up through the 244	

bottom boundary layer temporarily eroding the base of the pycnocline (Sharples, 1999, 2008; 245	

Sharples et al., 2001; Allen et al., 2004).  Second, wave and wind driven surface mixing (due to 246	

changes in wave/wind direction and/or velocity with prevailing weather conditions) may partially 247	

break down vertical stratification (Sharples and Tett, 1994; Rippeth et al., 2005; Williams et al., 248	

2013).  Shear boundaries (strong vertical gradients in horizontal currents) around the pycnocline may 249	

additionally aid in the retention of small organisms such as phytoplankton (Franks, 1995; Durham et 250	

al., 2009; Cheriton et al., 2010), whilst a synchronous accumulation of zooplankton (McManus et al., 251	

2005) can result in a propagation of food supply across multiple trophic levels. 252	

Sub-surface productivity at and around the pycnocline has been linked to foraging by a number of 253	

marine predators, such as little auk, northern fulmar, northern gannet Morus bassanus and grey seal 254	

Halichoerus grypus (Skov and Durinck, 2000; Scott et al., 2010).  In diving species, individuals may 255	

repetitively descend to the pycnocline (e.g. African penguin Spheniscus demersus, northern fur seal 256	

Callorhinus ursinus, northern right whale Eubalaena glacialis, rhinoceros auklet and thick-billed 257	

murre Uria lomvia; Baumgartner and Mate, 2003; Matsumoto et al., 2008; Takahashi et al., 2008; 258	

Kuhn, 2011; ven Eeden et al., 2016), where peaks in prey density (Hansen et al., 2001; Baumgartner 259	

and Mate, 2003) increase foraging efficiency (Pelletier et al., 2012).  In years when a pycnocline is 260	

absent or highly dispersed, foraging success tends to decrease, with concomitant consequences for 261	

seabird breeding success (Ropert-Coudert et al., 2009a).  Alternatively,  individuals (e.g. thick-billed 262	

murres in the southeastern Bering Sea) may expand the range of habitats foraged at (both in terms of 263	

horizontal extent and dive depth; Kokubun et al., 2010). 264	

The depth of the pycnocline is also an important determinant of foraging habitat suitability (Hunt et 265	

al., 1993; Skov and Durinck, 2000; Nordstrom et al., 2013).  Increased light attenuation with depth 266	

means productivity around shallower pcynoclines is likely enhanced compared with deeper 267	
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pcynoclines (Skov and Durinck, 2000).  Moreover, for near-surface feeders (e.g. northern fulmar) a 268	

shallower pycnocline may make prey available at more accessible depths (Skov and Durinck, 2000), 269	

and for those that dive from the surface (e.g. least auklet Aethia pusilla), reduce foraging energetic 270	

costs (Hunt et al., 1990; Haney, 1991; Skov and Durinck, 2000; Langton et al., 2011).  In thermally 271	

stratified waters, exothermic prey may redistribute themselves near the surface in an attempt to avoid 272	

unfavourable cool bottom boundary waters below the pycnoline (e.g. mackerel Scomber scombrus; 273	

Grégoire, 2006). 274	

3.3 Internal waves and offshore banks 275	

Internal waves form within stratified regions when tidal currents are interrupted by areas of abrupt, 276	

raised and/or uneven topography (Figure 1; Mann and Lazier, 2006), and commonly occur in 277	

proximity to the shelf edge (Bertrand et al., 2014) and around offshore banks (Palmer et al., 2013), 278	

reefs and rock pinnacles (Moum and Nash, 2000).  Resultant locally induced upwelling causes an 279	

oscillation in the pycnocline that can exceed an amplitude of 30m and approach ~50% of local water 280	

depth (Witman et al., 1993; Palmer et al., 2013).  Nutrient fluxes across the pycnocline sustain 281	

exceptionally high levels of sub-surface productivity (Richardson et al., 2000; Tweddle et al., 2013), 282	

whilst the simultaneous creation of a number of convergent (aggregating) and divergent (dispersing) 283	

zones (Figure 1) can alter the vertical distributions of plankton and small nekton (Lennert-Cody and 284	

Franks, 1999; McManus et al., 2005; Bertrand et al., 2008), forcing large aggregations of prey to the 285	

surface (Embling et al., 2013) that are foraged at by a range of marine predators (Moore and Lien, 286	

2007; Stevick et al., 2008; Scott et al., 2013; Bertrand et al., 2014).  These features appear to be 287	

especially important to those taxa that near-surface feed on plankton and/or forage fish such as black-288	

legged kittiwake, humpback whale Megaptera novaeangliae and several species of petrel and 289	

shearwater (Haney, 1987; Stevick et al., 2008; Hazen et al., 2009; Embling et al., 2012).  The 290	

generation of internal waves is tidally mediated (Pineda et al., 2015), and patterns in the occurrence 291	

of surface prey aggregations alongside marine mammal and seabird foraging regularly reflect this 292	
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(Hazen et al., 2009; Embling et al., 2012).  Further complexities in the shape of a topographic 293	

structure (e.g. steep-sided crests and mounts) may enhance the density of surface aggregations by 294	

concentrating tidal currents whilst simultaneously moderating the passage of internal waves to 295	

increase upwelling flows and surface convergence (Stevick et al., 2008).   296	

4 Tidal-mixing fronts 297	

Tidal-mixing fronts mark the transition zones between the seasonally stratifying waters of the mid-298	

shelf and mixing coastal waters (Simpson and Hunter, 1974; Pingree and Griffiths, 1978; Schumacher 299	

et al., 1979), and are marked by strong horizontal surface temperature gradients (Miller, 2009).  Their 300	

positions are dependent upon the ability of tidal currents and wind stress to overcome the buoyant 301	

effects of surface heat fluxes and mix the entire water column (Fearnhead, 1975; Franks, 1992a; Acha 302	

et al., 2004).  This is a function of water column depth, and so the position of a tidal-mixing front can 303	

be roughly predicted from the ratio of total water depth (h) to tidal velocity (u) - h/u3 (the Simpson-304	

Hunter parameter; Simpson and Hunter, 1974; Simpson and Sharples, 2012).  Once established, 305	

variation in a tidal-mixing front’s position occurs (Figure 2, Table 2), in response to changes in the 306	

strength of tidal currents with the spring-neap cycle (Sharples and Simpson, 1996; Simpson and 307	

Sharples, 2012), as well as from variation in heat flux and wind-driven mixing (Kachel et al., 2002; 308	

Nahas et al., 2005; Pisoni et al., 2015). 309	

Tidal-mixing fronts are often associated with elevated and persistent primary productivity that has 310	

the potential to propagate across multiple trophic levels (Coyle and Cooney, 1993; Munk et al., 1995; 311	

Gregory Lough and Manning, 2001).  Where the pycnocline of stratified offshore waters shallows to 312	

meet inshore mixing waters, increased light exposure supplemented with runoff nutrients (of coastal 313	

waters) alongside those mixed up from the bottom boundary layer results in productivity levels 314	

several orders of magnitude higher than in surrounding waters (Pingree et al., 1975; Simpson et al., 315	

1979; Franks, 1992a).  Additional convergent flows (Pingree et al., 1974) may redistribute the 316	
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horizontal and vertical distributions of weak or passively swimming organisms (e.g. plankton grazers 317	

attracted to the high productivity levels of the front; Coyle et al., 1998), resulting in near-surface 318	

retention and accumulation (Franks, 1992b; Epstein and Beardsley, 2001). 319	

A diverse range of marine predators forage around tidal-mixing fronts (Haney and McGillivary, 320	

1985b; Begg and Reid, 1997; Goold, 1998; Hunt et al., 1999; Weir and O’Brien, 2000).  Associations 321	

are particularly prominent in colonial seabirds, and land-based breeding sites are often located in 322	

proximity to these features (Hunt, 1997).  Large numbers of near-surface feeding planktivores, such 323	

as least auklet and short-tailed shearwater Puffinus tenuirostris, forage at and around tidal-mixing 324	

fronts in concordance with patches of increased zooplankton abundance (Hunt et al., 1996; Jahncke 325	

et al., 2005), which are often concentrated near the sea’s surface (Harrison et al., 1990; Hunt and 326	

Harrison, 1990; Russell et al., 1999).  These features may also attract large cetacean species including 327	

a number of lunge-feeding rorquals (e.g. blue whale Balaenoptera musculus, fin whale Balaenoptera 328	

physalus and humpback whale; Doniol-Valcroze et al., 2007; Dalla Rosa et al., 2012).  Piscivores, 329	

such as black-legged kittiwake, common dolphin Delphinus delphis, common guillemot, Magellanic 330	

penguin Spheniscus magellanicus and northern gannet, also frequently forage at tidal-mixing fronts 331	

(Kinder et al., 1983; Durazo et al., 1998; Goold, 1998; Boersma et al., 2009; Scales et al., 2014b; 332	

Cox et al., 2016, 2017), likely because the aggregating effects of these features on plankton 333	

predictably attract high densities of forage and pelagic fish (Hansen et al., 2001; Alemany et al., 334	

2009; Brigolin et al., 2018).  Across the southeastern Bering Sea, individuals present at these features 335	

have been directly linked to high density patches of fish prey (Decker and Hunt, 1996; Kokubun et 336	

al., 2008), where capture rates were increased (Vlietstra et al., 2005).  For both piscivores and 337	

planktivores, fronts with strong surface flow gradients may be particularly attractive, possibly due to 338	

additional aggregative effects on small biomass (Schneider et al., 1987).  Reduced productivity at 339	

frontal zones alongside geographical shifts in typical locations (in years of abnormal oceanographic 340	
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conditions; e.g. ENSO events) have been linked to increases in short-tailed shearwater mortality rates 341	

(Napp and Hunt, 2001). 342	

5 Near-shore coastal waters and estuaries 343	

On the shoreward side of a tidal-mixing front, turbulence generated through friction between tidal 344	

currents and the seabed extends the entire water column (due to shallow depths), and prevents thermal 345	

stratification (Simpson and Sharples, 2012).  As such, the majority of this region remains permanently 346	

mixed throughout the year.  Concentrated patches of primary productivity are generally limited to 347	

regions of fresh water influence (ROFIs) around estuarine systems, where salinity driven stratification 348	

may occur.  Other notable areas of interest to marine mammals and seabirds, such as those associated 349	

with tidally driven turbulence around topographic structures, likely function by mechanically altering 350	

the behaviours and distributions of zooplankton and fish prey, as indicated by periodicity in their use 351	

(Zamon, 2002, 2003).  Unlike the mid-shelf, where the seasonal development of thermal stratification 352	

plays a dominant role in the formation of foraging habitat, features occurring in near-shore coastal 353	

waters may persist throughout the year and, in some cases, are targeted perennially by marine 354	

predators (Skov and Prins, 2001).	355	

5.1 Channels, headland and island wakes, nearshore reefs and bays 356	

In near-shore coastal regions, marine mammals and seabirds frequently forage within tidally active 357	

areas (Nol and Gaskin, 1987; Marubini et al., 2009; Anderwald et al., 2012; Benjamins et al., 2015; 358	

Warwick-Evans et al., 2016; Waggitt et al., 2018), resulting in distinct regularities in their 359	

distributions and behaviours that coincide with particular tidal phases (Becker et al., 1993; Hunt et 360	

al., 1998; Irons, 1998; Isojunno et al., 2012; De Boer et al., 2014; Ijsseldijk et al., 2015).  Specifically, 361	

areas such as narrow channels, headlands, islands, reefs and bays often function as periodic foraging 362	

hotspots, where interactions between strong tidal currents (often exceeding 1.5ms-1) and complex 363	

topography create prosperous foraging opportunities for marine predators (Cairns and Schneider, 364	
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1990; Coyle et al., 1992; Zamon, 2003; Benjamins et al., 2015; Couperus et al., 2016).  In some 365	

instances, several of these features may occur in close proximity to one another (Bailey and 366	

Thompson, 2010). 367	

5.1.1 Channels and narrow passes 368	

Channels, corridors and narrow passes are typical of estuaries, fjords and island groups.  During 369	

strong tidal flows, these features may act as bottlenecks creating predictable and exploitable 370	

concentrations of zooplankton and fish prey advected from adjacent areas (Zamon, 2001, 2002; 371	

Couperus et al., 2016), which are exploited by a number of marine mammals and seabirds (Thompson 372	

et al., 1991; Lescrauwaet et al., 2000; Zamon, 2001; Holm and Burger, 2002; Hastie et al., 2004, 373	

2016; Ladd et al., 2005; Bailey and Thompson, 2010).  Rapid currents and turbulence along these 374	

passages (Nimmo Smith et al., 1999) may additionally disorientate fish and break down shoal 375	

cohesion (Liao, 2007), increasing catchability (Zamon, 2001, 2003; Crook and Davoren, 2014).  The 376	

fine scale foraging distributions of several piscivorous alcids, cetaceans and pinnipeds (e.g. Atlantic 377	

puffin, common guillemot, harbour porpoise Phocoena phocoena and harbour seal Phoca vitulina) 378	

across channels and narrow passes are known to concentrate in central and/or narrow areas where 379	

current flows are maximised (Pierpoint, 2008; Hastie et al., 2016; Waggitt et al., 2016a).  However, 380	

it should be noted that due to the energetics of navigating turbulent flows (Wilson et al., 2001; Heath 381	

and Gilchrist, 2010), some individuals may forage around the periphery of these currents where 382	

speeds are reduced (Pierpoint, 2008; Wilson et al., 2013; Cole et al., 2018), or avoid such areas 383	

completely (Wilson et al., 2001; Embling et al., 2010; Waggitt et al., 2016b).	384	

In some cases, the steep sides of a channel, corridor or narrow pass may additionally provide a barrier 385	

suitable for prey herding (Heimlich-Boran, 1988), and cetaceans that employ complex group foraging 386	

strategies (Simila and Ugarte, 1993; Fertl and Wilson, 1997; Duffy-Echevarria et al., 2008) are 387	

frequently observed at these features (Heimlich-Boran, 1988; Hastie et al., 2004; Bailey and 388	
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Thompson, 2010).  Where the edge of a channel or pass acts as a barrier to tidal currents (e.g. in the 389	

presence of shallow banks and/or meanders), resultant upwelling and current circulation can force 390	

advected zooplankton, and sometimes small nekton (e.g. forage fish), into dense aggregations 391	

(Simard et al., 1986; Lavoie et al., 2000; Davies et al., 2013) that may be driven towards the surface 392	

(Simard et al., 2002), making these features additionally attractive to both bulk-feeding baleen whales 393	

(Cotté and Simard, 2005) and surface feeding birds (e.g. a number of auklet species alongside 394	

Bonaparte’s Larus Philadelphia and Mew Larus canus gull; Vermeer et al., 1987; Hunt et al., 1998).  395	

In some instances, ephemeral features, known as Langmuir circulation cells, form convergent zones 396	

at the sea’s surface (over scales of a few to a couple of hundred metres; Barstow, 1983).  These can 397	

further entrain plankton and small nekton (Hamner and Schneider, 1986), which near-surface/surface 398	

foraging seabirds (e.g. northern fulmars and prions Pachyptila spp) have been observed exploiting 399	

(Goss et al., 1997; Ladd et al., 2005).  Where fast currents pour down into a channel, or where 400	

previous upwelled waters descend (Hunt et al., 1998), downwelling structures may form (Hunt et al., 401	

1998; Waggitt et al., 2016a).  Whilst these features have been linked to the foraging distributions of 402	

two benthic/demersal feeders (black guillemot Cepphus grille and European shag Phalacrocorax 403	

aristotelis; Waggitt et al., 2016a) alongside one upper-water column feeder (least auklet; Hunt et al., 404	

1998), the exact mechanisms driving these interactions are  unclear, but appear to be site and species 405	

specific (Hunt et al., 1998; Waggitt et al., 2017).	406	

5.1.2 Headland and island wakes 407	

When headland and island features interrupt the passage of strong tidal current flows, a leeward wake 408	

(or eddy) may form.  At the interface with non-wake waters, shear induced hydrographic fronts 409	

(Wolanski and Hamner, 1988; Johnston and Read, 2007) may accumulate zooplankton which become 410	

retained within the calm waters of the wake (Alldredge and Hamner, 1980).  In addition, turbulent 411	

flows around these structures may disorientate fish prey that use the wake to forage, or seek refuge 412	

from adjacent strong tidal currents (Liao, 2007; Robinson et al., 2007; Tarrade et al., 2008).  For 413	
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example, in the Bay of Fundy (Canada), harbour porpoise, fin and minke Balaenoptera acutorostrata 414	

whale exploit dense patches of euphasiids Meganyctiphanes norvegica and herring Clupea harengus 415	

along the edge of an island wake during flood tides (Johnston et al., 2005b, 2005a; Ingram et al., 416	

2007).  Bottlenose dolphins in the Moray Firth (UK) concentrate foraging activity along the surface 417	

signatures of hydrographic fronts, that form during specific tidal conditions in proximity to a headland 418	

on the edge of a deep, steep-sided channel (Bailey and Thompson, 2010), while across Glacier Bay 419	

and Icy Strait in southeastern Alaska, humpback whale distributions are disproportionately distributed 420	

within the leeward waters of several headlands (Chenoweth et al., 2011).  Where fish actively avoid 421	

turbulent flows (Nichol and Somerton, 2002), hydrographic fronts may act as a barrier to their 422	

movements, and so some predators (e.g. bottlenose dolphin and killer whale) may use these features 423	

for prey herding (Heimlich-Boran, 1988; Benjamins et al., 2015).  However, as of yet this has not 424	

been directly explored. 425	

5.1.3 Nearshore reefs, banks and ridges 426	

Where current flows run across nearshore topographically complex structures such as reefs, banks 427	

and ridges, under specific tidal conditions friction can generate shear instabilities, turbulence and 428	

upwelling (Coyle et al., 1992; Jones et al., 2014).  Peaks in common guillemot, harbour porpoise, 429	

phalaropes and thick-billed murre occurrence, corresponding to the locations and times at which these 430	

hydrographic features manifest, likely reflect changes in plankton and fish prey distributions that aid 431	

capture (Brown and Gaskin, 1986; Coyle et al., 1992; Skov and Thomsen, 2008; Jones et al., 2014).  432	

Further offshore where tidal currents are less pronounced (but still within boundaries of near-coastal 433	

regions), bathymetric features such as reefs and ridges may also act to trap plankton and small 434	

biomass during downward migration, which may be particularly attractive to planktivorous species 435	

foraging upon euphausiids, such as the short-tailed shearwater (Hunt et al., 1996).	436	

5.1.4 Bays 437	
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Where the curvature of a headland or series of small islands results in the formation of a bay, complex 438	

tidal circulation patterns (enforced by the curved profile of the bay) may accumulate plankton and 439	

small nekton through advection and retention (Gomez-Gutierrez and Robinson, 2006; Rogachev et 440	

al., 2008).  In bays characterised by the presence of steep topographic barriers and ledges, interactions 441	

with these circulation patterns can generate localised upwelling.  This can force accumulated biomass 442	

into dense surface aggregations, which appear to provide important foraging opportunities for a 443	

number of planktivorous species that either surface feed (e.g. black-legged kittiwake and red-necked 444	

phalarope Phalaropus lobatus; Drew et al., 2013; Thorne and Read, 2013) and/or bulk feed (e.g. 445	

bowhead whale Balaena mysticetus and North Atlantic right whale; Jiang et al., 2007; Rogachev et 446	

al., 2008). 447	

5.2 Regions of freshwater influence (ROFIs): Estuarine plume and tidal intrusion fronts 448	

Within and around estuarine systems, typical circulation patterns, forcing dense water below less 449	

dense water, promote the two-layer stratification of outflowing nutrient rich freshwater and intruding 450	

saline waters (Simpson and Sharples, 2012).  Where this stratification meets coastal mixing waters, 451	

high horizontal gradients in salinity and density mark the position of either a tidal intrusion front 452	

(dense saline coastal water intruding into the estuary) or a plume front (brackish water discharging 453	

out of the estuary; Simpson and Nunes, 1981; Lewis, 1984).  Stratification increases stability in the 454	

water column, and allows plankton to redistribute and settle at or above the salinity driven pycnocline 455	

(halocline) where waters are nutrient rich and light exposure increased.  Resultant productivity levels 456	

are high (Cloern, 1991), and attract large numbers of zooplankton and forage fish (Govoni et al., 457	

1989; Kingsford and Suthers, 1994; Kaltenberg et al., 2010; Phillips et al., 2017), which may be 458	

concentrated at the surface signature of the front due to additional convergent flows (Govoni et al., 459	

1989).  A number of piscivores, such as black and red throated diver Gavia stellata/arctica, bottlenose 460	

dolphin, common guillemot, little penguin, northern fur seal and sooty shearwater Ardenna grisea, 461	

forage at estuarine plume and tidal intrusion fronts (Skov and Prins, 2001; Mendes et al., 2002; 462	
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Pelland et al., 2014; Zamon et al., 2014; Kowalczyk et al., 2015a; Phillips et al., 2017).  The location, 463	

occurrence and strength of these features may be tidally mediated and/or dependent upon local current 464	

patterns, rainfall and wind events (Sharples and Simpson, 1993; Kingsford and Suthers, 1994; Choi 465	

and Wilkin, 2007; Schlacher et al., 2008).  Such variability may further impact the abundance and 466	

distribution of zooplankton and forage fish, alongside the behaviours of marine mammals and 467	

seabirds that forage at these feature (Mendes et al., 2002; Schlacher et al., 2008; Kowalczyk et al., 468	

2015b; Lin et al., 2015; Phillips et al., 2018).  For example, bottlenose dolphin foraging at a tidal 469	

intrusion front in the Moray Firth (UK), did so only during flood tide conditions when the front was 470	

most pronounced (Mendes et al., 2002), whilst sooty shearwater and common guillemots have been 471	

shown to spatially track the boundary of the Columbia River plume (USA) as it evolves through time 472	

(Phillips et al., 2018).  In Port Phillip Bay (Australia), little penguin breeding success has been linked 473	

to the occurrence and intensity of rainfall events, and subsequent changes in the dynamics of a local 474	

estuarine plume front and prey availability (Kowalczyk et al., 2015b).	475	

6 Oceanographic habitats and the facilitation of foraging 476	

It is evident that bio-physical processes strongly influence habitat choice by a diversity of marine 477	

mammals and seabirds that feed upon plankton and/or forage and pelagic fish, and across shelf-seas 478	

a range of oceanographic features are favoured for foraging.  Such associations appear attributable to 479	

predictable increases in prey accessibility and availability that stem from changes in the abundance 480	

and density, depth distribution, behaviour and/or patch persistence of prey, which together likely 481	

facilitate trophic transfer and enhance foraging efficiency (Pelletier et al., 2012; Boyd et al., 2016).  482	

For example, notable declines in the reproductive success of some marine predator populations have 483	

mirrored a change/reduction in the availability of prey enhancing oceanographic habitats following 484	

environmental changes with prevailing climatic and weather conditions (Hennicke and Culik, 2005; 485	

Scott et al., 2006; Boersma and Rebstock, 2009; Ropert-Coudert et al., 2009a; Wolf et al., 2009; 486	

Borstad et al., 2011).  The importance of difference aspects of prey availability (e.g. prey abundance 487	
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versus depth distribution, versus predictability) will depend upon species specific foraging strategies 488	

(e.g. surface feeder versus diver, available search time, differences in prey type; Hunt et al., 1999; 489	

Langton et al., 2011), alongside individual energetic requirements (Hennicke and Culik, 2005; 490	

Goldbogen et al., 2011).  For central place foragers constrained to land (e.g. many breeding seabirds 491	

and seals), some features may be inaccessible due to their proximity and limitations on an individuals 492	

foraging range (e.g. shelf-edge fronts; Thaxter et al., 2012).	493	

6.1 Increased abundance and density of prey 494	

Sites where prey are abundant in dense aggregations allow individuals to reduce foraging effort while 495	

maintaining sufficient yields (Enstipp et al., 2007; Benoit-Bird et al., 2013; Goldbogen et al., 2015; 496	

Thaxter et al., 2016).  Behavioural changes alongside increases in prey capture rates at a number of 497	

oceanographic features (Vlietstra et al., 2005; Rogachev et al., 2008; Cox et al., 2016) reflect the 498	

presence of abundant and densely concentrated prey (Decker and Hunt, 1996; Vlietstra et al., 2005; 499	

Stevick et al., 2008), suggesting these habitats can aid individuals in maximising foraging efficiency 500	

(Ropert-Coudert et al., 2009a; Goldbogen et al., 2011; Pelletier et al., 2012).  This typically occurs 501	

in tandem with increases in primary and secondary productivity (e.g. around shelf-edge fronts, 502	

upwelling fronts and tidal-mixing fronts; Decker and Hunt, 1996; Ainley et al., 2005; Jahncke et al., 503	

2005) or specific flow characteristics (e.g. convergent zones at offshore banks subject to the passage 504	

of internal waves; Embling et al., 2012, 2013), and may be particularly important for those individuals 505	

with especially high energetic needs (e.g. chick provisioning seabirds; Hennicke and Culik, 2005) 506	

and/or whose foraging strategies are particularly costly (Green et al., 2009; Goldbogen et al., 2011). 507	

6.2 Depth distribution of prey 508	

Depth distribution plays a key role in prey accessibility, particularly for those taxa that feed at or near 509	

the surface and/or have limited dive capabilities (Embling et al., 2012; Boyd et al., 2015).  Surface 510	

convergent zones at shelf-edge fronts, upwelling fronts and tidal-mixing fronts are frequently used 511	
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by these foragers, as are localised upwelling structures related to interactions between topography 512	

and tidal currents (e.g. at offshore banks and around the coast).  In such areas, individuals have been 513	

directly linked to shallow prey aggregations (Russell et al., 1999; Stevick et al., 2008; Embling et al., 514	

2012).  For air-breathing diving predators, changes in the depth distributions of their prey may reduce 515	

the energetic costs of capture by either allowing individuals to concentrate search activity within a 516	

restricted proportion of the water column, or reducing overall dive depths from the surface (Ropert-517	

Coudert et al., 2009b; Benoit-Bird et al., 2011).  For example, the foraging efficiencies of some diving 518	

seabirds appear to be tied to the presence of vertical prey aggregating features such as the pycnocline 519	

(Ropert-Coudert et al., 2009a; Pelletier et al., 2012). 520	

6.3 Prey behaviour 521	

Bio-physical conditions and processes may elicit a change in prey behaviour that further alters 522	

densities and depth distributions to increase vulnerability to predation by marine mammals and 523	

seabirds.  The breakdown of fish school cohesion likely makes individual prey items easier to catch 524	

(Crook and Davoren, 2014; Kilian et al., 2015; Hastie et al., 2016), as may the formation of prey 525	

concentrations in areas of reduced current speeds (e.g. around island wakes) as fish attempt to avoid 526	

such disruptions (Liao, 2007; Robinson et al., 2007; Benjamins et al., 2015).  Alternatively, the 527	

temperature preferences of some prey mean they may redistribute themselves to aggregate in warmer, 528	

near surface waters (Grégoire, 2006). 529	

6.4 Persistence and predictability 530	

The oceanographic features favoured for foraging by marine mammals and seabirds typically occur 531	

in a persistent and/or predictable manner.  If individuals can learn and remember the locations at 532	

which encountering accessible prey is more probable (Hunt et al., 1999; Gende and Sigler, 2006; 533	

Weimerskirch, 2007; Davoren, 2013; Regular et al., 2013; Grecian et al., 2018), concentrated search 534	

effort (Hamer et al., 2009; Pettex et al., 2010; Dragon et al., 2012; Patrick et al., 2014) can increase 535	
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foraging efficiency (Stephens and Krebs, 1986).  Targeted search patterns have been shown to 536	

coincide with the occurrence of a number of oceanographic habitats that are repetitively visited 537	

(Bailey and Thompson, 2010; Sabarros et al., 2014; Scales et al., 2014b).  Moreover, these behaviours 538	

have been shown to develop as individuals mature, suggesting they are beneficial (Grecian et al., 539	

2018).  In some cases, the scales across which targeted search effort occur are tied to those of 540	

corresponding physical processes.  For example, gannets foraging around tidal-mixing fronts restrict 541	

search behaviours over scales of between 2km to 10km (Hamer et al., 2009; Scales et al., 2014b) 542	

reflective of those over which the locations of these features vary with tidal- and wind- driven events 543	

(Nahas et al., 2005; Pisoni et al., 2015).  Bottlenose dolphins foraging around topographically 544	

controlled tidal structures display highly localised search behaviours over 100’s of metres, which 545	

mirrors the similarly scaled predictability of these features (Bailey and Thompson, 2010). 546	

7 Future research directions 547	

Whilst associations between marine predators and bio-physical processes have been documented 548	

across numerous studies, there are a number of areas in which improvements are still necessary.  549	

Concurrent measurements of sub-surface oceanography, low- to mid- trophic level prey distributions 550	

and marine mammal and seabird behaviours around many discrete physical features are lacking (e.g. 551	

tidal stream environments), or limited to a specific set of locations and sites (e.g. the Bering Sea, 552	

British Isles and Canadian Continental Shelf).  Moreover, fine-scale three-dimensional measurements 553	

of marine mammal and seabird movements are rarely integrated, which would allow for estimates of 554	

prey capture attempts and energetic expenditure to be calculated and used to evaluate foraging 555	

effort/efficiency (Viviant et al., 2010; Watanabe and Takahashi, 2013; Richard et al., 2016).  556	

Achieving this would greatly increase our understanding of how physical habitats impact prey 557	

availability for marine predators and facilitate trophic transfer (Embling et al., 2012), whilst also 558	

elucidating site and species specificity (Waggitt et al., 2017) alongside the drivers of spatio-temporal 559	

variability in marine mammal and seabird distributions (Certain et al., 2007).  Such efforts may also 560	
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reveal the importance of other, lesser studied structures.  For example, to our knowledge, the 561	

ecological significance of bottom fronts (which may be important to deeper diving predators) is yet 562	

to be investigated (Hill et al., 2008).  In addition, despite some evidence suggesting Langmuir 563	

circulation cells are exploited by surface feeding seabirds in near-coastal regions (Goss et al., 1997; 564	

Ladd et al., 2005), the importance of these features further offshore is yet to be explored  (Barstow, 565	

1983).  Distinguishing the way in which individuals perceive their environment via knowledge 566	

transfer (Machovsky-Capuska et al., 2014), learning and memory (Regular et al., 2013; Grecian et 567	

al., 2018), sight (Bodey et al., 2014; Tremblay et al., 2014; Bairos-Novak et al., 2015) and smell 568	

(Savoca and Nevitt, 2014) would also be beneficial, as would an increased knowledge of 569	

immature/juvenile foraging behaviours and how these develop through time (de Grissac et al., 2017; 570	

Votier et al., 2017; Grecian et al., 2018).  Further inter-taxa research (e.g. marine mammals versus 571	

seabirds, planktivores versus piscivores, and surface feeders versus divers) would compliment this, 572	

and provide additional insight of the selection pressures that have shaped the evolution of the at-sea 573	

behaviours of these animals, and driven the necessary adaptations required for foraging in dynamic 574	

waters.  Such investigations may also be useful for assessing the potential of these taxa to adapt in 575	

response to climate change.  Finally, there is a distinct lack of studies determining the importance of 576	

oceanographic habitat features at a population level, which should be addressed.  Future research 577	

should aim to fill these gaps if we are to improve our understanding of habitat use by marine mammals 578	

and seabirds across shelf-seas.  However, achieving this will require novel methodological 579	

techniques.  Adaptive survey designs (Embling et al., 2012; Suberg et al., 2014; Waggitt and Scott, 580	

2014; Waggitt et al., 2016a; Benjamins et al., 2017) that incorporate active and passive acoustics 581	

(Williamson et al., 2015; Benoit-Bird and Lawson, 2016; Macaulay et al., 2017; Malinka et al., 2018) 582	

alongside underwater videography (Machovsky-Capuska et al., 2011; Crook and Davoren, 2014) may 583	

prove particularly useful, as will animal borne biologging via the attachment of accelerometers 584	

(Viviant et al., 2010; Watanabe and Takahashi, 2013), cameras (Votier et al., 2013; Watanabe and 585	
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Takahashi, 2013; Tremblay et al., 2014), GPS loggers (Yoda et al., 2014), oceanographic sensors 586	

(Charrassin et al., 2008) and satellite relay systems (e.g. the Argos satellite system; Photopoulou et 587	

al., 2015; CLS, 2016; Cox et al., 2018).  Moreover, outputs from remote-sensing and oceanographic 588	

modelling can be used to initially identify discrete features of interest (Scales et al., 2014a; Waggitt 589	

et al., 2016a), and/or provide data over extended areas/time-spans/retrospectively.  This may require 590	

novel processing and analytical routines, that can characterise and link bio-physical processes to 591	

information on animal behaviour and movement (d’Ovidio et al., 2004; Miller, 2009; Embling et al., 592	

2012; Boyd et al., 2014; Bayle et al., 2015; Mattei et al., 2018; Pirotta et al., 2018), with particular 593	

attention paid towards the spatio-temporal scales of investigations (Figure 2, Table 1; Mannocci et 594	

al., 2017; Scales et al., 2017).  Ideally, multiple approaches should be combined and integrated with 595	

demographic data, which would yield an overview of ecosystem dynamics unprecedented in detail 596	

(Boyd et al., 2015; Barbraud et al., 2017; Carroll et al., 2017), and can later be used to force individual 597	

and population based models to determine the adaptability of these environments to future change 598	

(e.g. anthropogenic or climatically driven; Boyd et al., 2016; Barbraud et al., 2017).    	599	

8 Applications to conservation management 600	

Over the last 20-30 years, marine management and policy has started to evolve from single species 601	

based protocols and strategies (typically tailored to a specific fishery/sector), to more holistic methods 602	

that consider ecosystems in their entirety, and incorporate more precautionary conservation measures 603	

(e.g. the European Marine Strategy Framework Directive 2008/56/EC; Pikitch et al., 2004; Arkema 604	

et al., 2006; Curtin and Prellezo, 2010).  Key to this is the preservation  of core shelf-sea habitats, 605	

such as those oceanographic features identified here as favourable for foraging by marine mammals 606	

and seabirds (Hooker and Gerber, 2004; Taylor et al., 2005; Heithaus et al., 2008; Game et al., 2009; 607	

Dickey-Collas et al., 2017; Sherley et al., 2017).  However, achieving adequate protection is 608	

complicated by the diverse nature of such structures, which occur over a range of spatio-temporal 609	

scales (Figure 2 and Table 1), and function via a variety of bio-physical mechanisms that may impact 610	
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prey availability in different ways (e.g. through inducing changes in depth distribution, persistent, 611	

predictability, abundance and/or behaviour; see section 6).  A sophisticated understanding of these 612	

dynamics can be used to effectively implement appropriate and customised conservation management 613	

strategies (Authier et al., 2017). 614	

For example, initial implementations of holistic management have focused on fixed area based 615	

protection through the designation of marine protected areas (MPAs; Hyrenbach, 2000; Hooker and 616	

Gerber, 2004).  Here, the aim is to reduce overlap with spatially explicit threats (e.g. commercial 617	

fisheries, marine renewables and maritime traffic) that may cause direct mortality and/or disrupt 618	

accessibility to favoured habitats (e.g. through prey depletion or displacement; Pichegru et al., 2010; 619	

Gormley et al., 2012).  However, while persistent and predictable bathymetrically tied tidal features 620	

(e.g. offshore banks, channels and island wakes) may be particularly well suited to such measures, to 621	

accommodate individuals relying on habitats that are variable through space and time (e.g. upwelling 622	

and tidal-mixing fronts), adaptive approaches are required.  A recent solution to this is dynamic ocean 623	

management (DOM), defined as management that is adjustable through space and time in response 624	

to the shifting nature of the ocean and its users (Hobday et al., 2014; Lewison et al., 2015; Maxwell 625	

et al., 2015).  Such methods can thus allow for geographical changes in habitat locations with, for 626	

example, prevailing environmental conditions (e.g. position in spring-neap cycle alongside short term 627	

weather events, seasonal trends and longer term climatic changes; Nahas et al., 2005; Bograd et al., 628	

2009a; Pisoni et al., 2015).  However, implementing DOM requires multidisciplinary and novel 629	

monitoring approaches, so as boundaries are effectively designated and modified (Hazen et al., 2018).  630	

Moreover, attention needs to be paid towards the spatio-temporal scales over which data is acquired 631	

and protection implemented, which should reflect the characteristics and spatio-temporal variability 632	

of an oceanographic feature (Figure 2, Table 2; Mannocci et al., 2017; Scales et al., 2017).  Satellite 633	

remote-sensing can aid in this by allowing oceanographic features to be tracked both instantaneously 634	

in near real time and over longer periods, although this is only applicable where a distinct surface 635	
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signature is presented (Miller, 2009; Scales et al., 2014a).  Sensors deployed on diving animals 636	

autonomous/unmanned survey vehicles and/or moorings may compliment such information 637	

(Charrassin et al., 2008; Suberg et al., 2014; Photopoulou et al., 2015), as can outputs from 638	

oceanographic and statistical modelling (Brodie et al., 2018; Mattei et al., 2018).  Where stationary 639	

management is preferred, long-term time series data may be used to develop buffer zones that extend 640	

the boundaries of a fixed MPA, such that fluctuations in the spatio-temporal occurrence of a habitat 641	

feature is captured (e.g. the entire spring-neap/weather dependent range of a tidal-mixing front; Nahas 642	

et al., 2005; Grantham et al., 2011; Pisoni et al., 2015).  Such strategies should still be evaluated at 643	

regular intervals to assess potential geographical shifts in response to climate change (Queiros et al., 644	

2016). 	645	

A shift towards management strategies than consider habitat hydrology in addition to geography is 646	

also beneficial to ensuring that the functioning of oceanographic features favoured for foraging is 647	

maintained (Dickey-Collas et al., 2017).  For example, anthropogenically generated structural 648	

changes to the marine environment (e.g. marine renewable energy installations; MREIs) may alter 649	

the bio-physical and spatio-temporal characteristics of oceanographic environments (e.g. 650	

interruptions to near coastal current regimes may alter and/or manifest tidally driven features such as 651	

hydrographic fronts, wakes and localised upwelling systems; Brostrom, 2008; Shields et al., 2011; 652	

Benjamins et al., 2015; Fraser et al., 2018).  This may cause shifts in the geographical locations at 653	

which these structures occur and impact prey availability (e.g. depth distribution and predictability; 654	

Becker and Beissinger, 2003), and thus should be carefully considered during the planning stages of 655	

development projects.  Impact assessments at sites where oceanographic features favoured for 656	

foraging are present need to consider how variability in the dynamics of such structures influence 657	

patterns in area use by marine mammals and seabirds, and thus the validity of associated evaluations 658	

(Benjamins et al., 2017; Cox et al., 2017).  Climate change impacts will likely also alter the 659	

functioning of these habitats.  Increases in the frequency and intensity of extreme climatic (e.g. ENSO 660	
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associated changes in upwelling; Cai et al., 2014) and weather (e.g. storm induced turbulent mixing; 661	

Young et al., 2011) events may again, modify the dynamics and geographical locations of critical 662	

oceanographic features (Hazen et al., 2013; Sherley et al., 2017), such as upwelling fronts, the 663	

pycnocline and tidal-mixing fronts (Ropert-Coudert et al., 2009a; Pisoni et al., 2015).  For example, 664	

decreases in the reproductive outputs of a number of seabirds have been linked to changes in the 665	

availability of oceanographically generated foraging habitats following irregularities in prevailing 666	

climatic and weather conditions (Hennicke and Culik, 2005; Durant et al., 2006; Scott et al., 2006; 667	

Ropert-Coudert et al., 2009a).  Minimising the impacts of this will require adaptive, innovative and 668	

precautionary management strategies that minimise cumulative stressors (Field and Francis, 2006; 669	

Lester et al., 2010; Sherley et al., 2017), particularly since our understanding of how ecosystems will 670	

cope and respond to such alterations is largely unknown.  Again, MPAs and DOM informed by 671	

studies on the dynamics of oceanographic features favoured for foraging will likely play an important 672	

role in this (Halpern et al., 2010; Grantham et al., 2011; Briscoe et al., 2016; Dickey-Collas et al., 673	

2017).	674	

9 Conclusions 675	

A range of oceanographic features are favoured for foraging by marine mammals and seabirds across 676	

shelf-seas in mid-latitude temperate zones.  Whilst associations are diverse and variable in nature 677	

(both between sites and across species), in the majority of cases intricate interactions between 678	

bathymetry and tidal currents play a dominant role, alongside patterns in seasonal stratification and 679	

shelf-edge upwelling.  The attractiveness of a favoured oceanographic feature appears to stem from 680	

persistent and/or predictable increases in prey accessibility which facilitates foraging.  Changes in 681	

prey abundance and density, behaviour and depth distribution are fundamental to this, and in a number 682	

of cases have been shown to improve foraging efficiencies.  However, our knowledge of interactions 683	

between marine predators and oceanographic features favoured for foraging is far from complete, and 684	

future work should aim to further our understanding of the functional mechanisms linking bio-685	
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physical processes, prey and marine mammals and seabirds.  In many instances, detailed and 686	

simultaneous three-dimensional measurements of sub-surface oceanography, prey densities and 687	

distributions alongside marine predator behaviours (across three-dimensions) are lacking, and this 688	

should be addressed.  Such efforts may also elucidate the importance of lesser studied features such 689	

as bottom fronts and Langmuir circulation cells.  A better understanding of how predators perceive 690	

their environment and develop foraging strategies during immature/juvenile stages would also be 691	

beneficial, as would comparative inter-taxa research and estimates of the importance of 692	

oceanographic habitat features at a population level.  Knowledge of the bio-physical processes that 693	

underlie habitat use by marine mammals and seabirds across shelf-seas should be used to inform 694	

future conservation management and policy.  This will require improvements in the monitoring of 695	

oceanographic conditions such that adaptive strategies can be implemented which, where necessary, 696	

can evolve through space and time in response to the dynamic nature of the ocean.  This would aid 697	

the preservation and protection of oceanographic features that facilitate trophic transfer, and are thus 698	

critical to the functioning of shelf-sea environments.  Such holistic approaches are vital to ensuring 699	

the future health of these complex ecosystems.  	700	
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Figures 

 

Figure 1.  Cross shelf schematic giving an overview of the typical oceanographic structure of thermally stratified shelf-sea environments at mid-
latitudes during the summer months.  Adapted from Simpson and Sharples (2012).  Black directional arrows show (1) turbulent mixing around the 
seabed, offshore banks and islands (circular arrows), and (2) convergent and divergent upwelling and downwelling currents associated with the passage 
of internal waves (angled arrows).	

705	
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Figure 2.  Overview of the typical spatio-temporal scales oceanographic structures across shelf-sea environments function over.  Further details can be 
found in Table 1. 
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Table 1.  Details of the generalised spatio-temporal scales over which oceanographic features favoured for foraging across shelf-seas function.  Columns 706	
from left to right list a features name, the spatial and temporal extent its expanse covers respectively, and finally the spatio-temporal scales over which 707	
variation may occur.  References are provided for specific examples of features functioning in this manner.  Note that regional and site specific differences 708	
in physical forcing mean there is variation around these generalisations in spatio-temporal scale, which should be assessed. 709	

BIO-PHYSICAL 
HABITAT FEATURE 

SPATIAL EXTENT TEMPORAL EXTENT SPATIO-TEMPORAL VARIATION 

Shelf-edge fronts Lateral extent of 10’s - ~100km.  Length may 
exceed 100’s km’s (e.g. Celtic shelf break and 
along the edge of the continental shelf of the 
Bering Sea; Pingree et al., 1981; Springer et al., 
1996).	

Typically persist perennially, although strength 
and associated productivity may vary 
seasonally (Fournier et al., 1979; Ryan et al., 
1999). 

Geographical location may shift 10’s km’s with prevailing 
meteorological conditions, seasonal changes and climatic 
fluctuations (Linder and Gawarkiewicz, 1998).  Intensity may 
also vary over similar temporal scales (e.g. the strength of frontal 
interfaces as determined by horizontal gradients in sea surface 
temperature), and inter-annually with impacts on associated 
productivity (Fournier et al., 1979).	

Wind-driven upwelling 
fronts 

Lateral extent of 10’s to ~100km.  Length may 
exceed 100’s km’s (e.g. along the California and 
Humbolt Currents; Acha et al., 2004; Letelier et 
al., 2009; Kahru et al., 2012).	

Generally display some seasonality in 
occurrence in response to upwelling intensity 
with current flows wind events (Kampf et al., 
2004; Bograd et al., 2009b; Letelier et al., 
2009).  Once established, may persist for 
several months.	
 

Geographical location may shift 10-100’s km’s seasonally and 
inter-annually with climatic fluctuations in upwelling intensity, 
which may also impact frontal intensity and productivity levels 
(Bograd et al., 2009b; Letelier et al., 2009).  Surface 
convergences and instabilities within these zones may be more 
ephemeral in occurrence, and linked to local meteorological 
conditions (Capet et al., 2008). 

Spring bloom Can extend across stratified section of the shelf-
sea, encompassing areas exceeding 100’s km2 
(e.g. Celtic & North Seas; Pingree et al., 1976; 
Holligan et al., 1989).	

Seasonally occurring in spring for a period 
lasting no more than a month (typically around 
1-2 weeks; Pingree et al., 1976; Townsend and 
Spinrad, 1986; Mills et al., 1994).	

Initial date may vary with the spring-neap cycle alongside 
changes in climatic conditions (Hunt and Stabeno, 2002; Mann 
and Lazier, 2006; Sharples et al., 2006), which can also impact 
magnitude of productivity (Sambrotto et al., 1986).  Regional 
variation in initial start date also occurs (e.g. latitudinally; 
Henson et al., 2009).  Smaller scaled shifts in geographical 
occurrence may also occur inter-annually (e.g. across the Bering 
Sea; Hunt and Stabeno, 2002).	

Vertical interfaces in 
stratified regions (i.e. 
the pycnocline) 

Vertical extent of 10 cm’s to a few metres 
(Simpson and Sharples, 2012).  Horizontally 
extends across offshore stratified section of 
shelf-sea, which may encompass 100’s km2 
(Pingree, 1975; Holligan et al., 1989). 

In offshore waters may be persistent 
perennially, although depth and inshore extent 
varies seasonally, and is most prominent during 
spring, summer and early autumn (Pingree, 
1975).   

Inshore extent and depth can vary inter-annually, seasonally, and 
on short time-scales (days to weeks), with climatic variation, 
weather events and tidal currents, as can the intensity of the 
pycnocline (i.e. gradient of change in density; Cairns and 
LaFond, 1966; Skov and Durinck, 2000; Ropert-Coudert et al., 
2009; Kokubun et al., 2010).  As the pycnocline approaches 
tidal-mixing fronts at the boundaries of coastal mixing waters, its 
depth shallows (Pingree, 1975).  Around offshore banks, reduced 
depths are observed with internal wave passage and localised 
upwelling (Stevick et al., 2008; Embling et al., 2012).	

Sub-surface 
productivity 

May occur over a larger area exceeding 10’s 
km’s (Weston et al., 2005), or locally in 
concentrated patches of 100’s m’s to km’s (Scott 

Can occur across a season, or ephemerally for a 
few days/weeks (Richardson and 
Christoffersen, 1991; Sharples et al., 2001; 

Productivity and entrainment may be highest when the water 
column stabilises, following a period of tidal and wave induced 
vertical mixing (McManus et al., 2005; Cheriton et al., 2007; 
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et al., 2010).  Productivity is generally vertically 
concentrated within a few m’s of the pycnocline 
(Sharples et al., 2001). 

Sharples, 2008). Durham et al., 2009).  May be particularly elevated around 
offshore banks where internal waves propagate or there is 
localised upwelling (Lennert-Cody and Franks, 1999; Richardson 
et al., 2000; Embling et al., 2012). 

Offshore banks & 
internal waves 

Spatially predictable and tied to topographic 
features generally occurring over 1-10’s km2 

(e.g. Jones bank; (Palmer et al., 2013). 

Appear to be seasonal features linked to thermal 
stratification between late spring and early 
autumn.  May function intermittently with 
specific tidal conditions (Embling et al., 2012, 
2013; Palmer et al., 2013)	

Closely tied to bathymetric structures.  Propagation of internal 
waves may vary with spring-neap modulation and storms 
(Embling et al., 2013; Palmer et al., 2013).  Those associated 
with the shelf edge (e.g. within the Humboldt current; Bertrand et 
al., 2008), may be influenced by changes in upwelling intensity.	

Tidal-mixing fronts Small lateral extent of typically 100’s m’s to 10’s 
km (Schumacher et al., 1979; Decker and Hunt, 
1996; Durazo et al., 1998).  Length may exceed 
10’s km’s (e.g. tidal mixing fronts around the 
Bristish Isles; Fearnhead, 1975; Pingree and 
Griffiths, 1978; Miller, 2009).	

Seasonally occurring from late spring to early 
autumn (e.g. Fearnhead, 1975; Pingree and 
Griffiths, 1978; Kachel et al., 2002; Acha et al., 
2004).	

Locations are coarsely predictable and typically tied to a ratio of 
total water depth (h) and tidal velocity (u) - h/u3 (Simpson and 
Hunter, 1974).  Inshore/offshore shifts may occur over scales of 
10’s km’s, in response to changes in current strength with the 
spring-neap cycle, alongside surface induced mixing during wind 
events and decreased solar irradiance (Kachel et al., 2002; Nahas 
et al., 2005; Pisoni et al., 2015).  This may follow seasonal 
patterns (Hill and Simpson, 1989).  Small scale variation (100’s 
m’s to km’s) in the surface signature of a front may occur 
throughout the tidal cycle and due to prevailing wind conditions 
(Durazo et al., 1998).	

Channels, headland & 
island wakes, nearshore 
reefs & bays 

Predictable, topographically tied localised 
features, occurring over 100’s m’s to a few km’s 
(Zamon, 2002; Johnston and Read, 2007; Bailey 
and Thompson, 2010; Jones et al., 2014).  Some 
channels, bays and passes may extend across 
10’s km’s (e.g. Academy Bay, Sea of Okhotsk, 
and passes between Aleutian Islands; Ladd et al., 
2005; Rogachev et al., 2008).	

May occur perennially, although only at 
specific times in the tidal cycle (Zamon, 2003; 
Johnston and Read, 2007; Bailey and 
Thompson, 2010; Waggitt et al., 2016). 

Functionality may vary with strength and direction of water 
currents across diurnal and bi-weekly tidal cycles (Johnston and 
Read, 2007; Bailey and Thompson, 2010; Jones et al., 2014).  
Local wind patterns may temporarily intensify surface 
convergences (e.g. occurrence of Langmuir circulation cells; 
Goss et al., 1997; Ladd et al., 2005).	

ROFI’s: estuarine 
plume & tidal intrusion 
fronts 

May be localised over 100’s m’s (e.g. Moray 
Firth fronts; Mendes et al., 2002) or larger 
encompassing 10’s to 100’s of km’s (e.g. 
Columbine Estuarine & Mississippi River Plume 
Fronts; Govoni et al., 1989; Phillips et al., 2018).	

Occur perennially, sometimes periodically with 
the tidal cycle (Simpson and Nunes, 1981; 
Mendes et al., 2002; Phillips et al., 2018). 

Occurrence may be linked to specific phases of the tidal cycle 
(e.g. Mendes et al., 2002).  Geographical location and strength 
may vary with tidal cycle and experience spatial variation with 
spring-neap changes in current strength.  Local weather 
conditions and climate will also impact geographical location, 
occurrence and strength (e.g. rainfall and wind; Kowalczyk et al., 
2015b; Phillips et al., 2018).  Productivity blooms may follow 
such cycles (Cloern, 1991).	
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