113 research outputs found

    Fine-scale hydrodynamics influence the spatio-temporal distribution of harbour porpoises at a coastal hotspot

    Get PDF
    The coastal Runnelstone Reef, off southwest Cornwall (UK), is characterised by complex topography and strong tidal flows and is a known high-density site for harbour porpoise (. Phocoena phocoena); a European protected species. Using a multidisciplinary dataset including: porpoise sightings from a multi-year land-based survey, Acoustic Doppler Current Profiling (ADCP), vertical profiling of water properties and high-resolution bathymetry; we investigate how interactions between tidal flow and topography drive the fine-scale porpoise spatio-temporal distribution at the site. Porpoise sightings were distributed non-uniformly within the survey area with highest sighting density recorded in areas with steep slopes and moderate depths. Greater numbers of sightings were recorded during strong westward (ebbing) tidal flows compared to strong eastward (flooding) flows and slack water periods. ADCP and Conductivity Temperature Depth (CTD) data identified fine-scale hydrodynamic features, associated with cross-reef tidal flows in the sections of the survey area with the highest recorded densities of porpoises. We observed layered, vertically sheared flows that were susceptible to the generation of turbulence by shear instability. Additionally, the intense, oscillatory near surface currents led to hydraulically controlled flow that transitioned from subcritical to supercritical conditions; indicating that highly turbulent and energetic hydraulic jumps were generated along the eastern and western slopes of the reef. The depression and release of isopycnals in the lee of the reef during cross-reef flows revealed that the flow released lee waves during upslope currents at specific phases of the tidal cycle when the highest sighting rates were recorded. The results of this unique, fine-scale field study provide new insights into specific hydrodynamic features, produced through tidal forcing, that may be important for creating predictable foraging opportunities for porpoises at a local scale. Information on the functional mechanisms linking porpoise distribution to static and dynamic physical habitat variables is extremely valuable to the monitoring and management of the species within the context of European conservation policies and marine renewable energy infrastructure development

    The effects of high HIV prevalence on orphanhood and living arrangements of children in Malawi, Tanzania, and South Africa

    Get PDF
    Using longitudinal data from three demographic surveillance systems (DSS) and a retrospective cohort study, we estimate levels and trends in the prevalence and incidence of orphanhood in South Africa, Tanzania, and Malawi in the period 1988–2004. The prevalence of maternal, paternal, and double orphans rose in all three populations. In South Africa—where the HIV epidemic started later, has been very severe, and has not yet stabilized—the incidence of orphanhood among children is double that of the other populations. The living arrangements of children vary considerably between the populations, particularly in relation to fathers. Patterns of marriage, migration, and adult mortality influence the living and care arrangements of orphans and non-orphans. DSS data provide new insights into the impact of adult mortality on children, challenging several widely held assumptions. For example, we find no evidence that the prevalence of child-headed households is significant or has increased in the three study areas

    Mesoscale and Submesoscale Effects on Mixed Layer Depth in the Southern Ocean

    Get PDF
    Submesoscale dynamics play a key role in setting the stratification of the ocean surface mixed layer and mediating air–sea exchange, making them especially relevant to anthropogenic carbon uptake and primary productivity in the Southern Ocean. In this paper, a series of offline-nested numerical simulations is used to study submesoscale flow in the Drake Passage and Scotia Sea regions of the Southern Ocean. These simulations are initialized from an ocean state estimate for late April 2015, with the intent to simulate features observed during the Surface Mixed Layer at Submesoscales (SMILES) research cruise, which occurred at that time and location. The nested models are downscaled from the original state estimate resolution of 1/12° and grid spacing of about 8 km, culminating in a submesoscale-resolving model with a resolution of 1/192° and grid spacing of about 500 m. The submesoscale eddy field is found to be highly spatially variable, with pronounced hot spots of submesoscale activity. These areas of high submesoscale activity correspond to a significant difference in the 30-day average mixed layer depth ΔH_ML between the 1/12° and 1/192° simulations. Regions of large vertical velocities in the mixed layer correspond with high mesoscale strain rather than large ΔH_ML. It is found that ΔH_ML is well correlated with the mesoscale density gradient but weakly correlated with both the mesoscale kinetic energy and strain. This has implications for the development of submesoscale eddy parameterizations that are sensitive to the character of the large-scale flow.The authors gratefully acknowledge support from the Natural Environment Research Council Awards NE/J010472/1 and NE/J009857/1

    An investigation of factors associated with the health and well-being of HIV-infected or HIV-affected older people in rural South Africa

    Get PDF
    BackgroundDespite the severe impact of HIV in sub-Saharan Africa, the health of older people aged 50+ is often overlooked owing to the dearth of data on the direct and indirect effects of HIV on older people's health status and well-being. The aim of this study was to examine correlates of health and well-being of HIV-infected older people relative to HIV-affected people in rural South Africa, defined as participants with an HIV-infected or death of an adult child due to HIV-related cause. MethodsData were collected within the Africa Centre surveillance area using instruments adapted from the World Health Organization (WHO) Study on global AGEing and adult health (SAGE). A stratified random sample of 422 people aged 50+ participated. We compared the health correlates of HIV-infected to HIV-affected participants using ordered logistic regressions. Health status was measured using three instruments: disability index, quality of life and composite health score. ResultsMedian age of the sample was 60 years (range 50-94). Women HIV-infected (aOR 0.15, 95% confidence interval (CI) 0.08-0.29) and HIV-affected (aOR 0.20, 95% CI 0.08-0.50), were significantly less likely than men to be in good functional ability. Women's adjusted odds of being in good overall health state were similarly lower than men's; while income and household wealth status were stronger correlates of quality of life. HIV-infected participants reported better functional ability, quality of life and overall health state than HIV-affected participants. Discussion and Conclusions The enhanced healthcare received as part of anti-retroviral treatment as well as the considerable resources devoted to HIV care appear to benefit the overall well-being of HIV-infected older people; whereas similar resources have not been devoted to the general health needs of HIV uninfected older people. Given increasing numbers of older people, policy and programme interventions are urgently needed to holistically meet the health and well-being needs of older people beyond the HIV-related care system. <br/

    Nutrient Pumping by Submesoscale Circulations in the Mauritanian Upwelling System

    Get PDF
    Observations made within a cold filament in the Mauritanian upwelling system demonstrate that intense submesoscale circulations at the peripheral edges of the filament are likely responsible for anomalously high levels of observed primary productivity by resupplying nutrients to the euphotic zone. Measurements made on the shelf within the recently upwelled water reveal that primary production (PP) of 8.2 gC/m−2 day−1 was supported by nitrate concentrations (NC) of 8 mmol m−3. Towards the front that defined the edge of the filament containing the upwelled water as it was transported offshore, PP dropped to 1.6 gC m−2 day−1 whilst NC dropped to 5.5 mmol m−3. Thus, whilst the observed nutrients on the shelf accounted for 90% of new production, this value dropped to ∼60% near the filament’s front after accounting for vertical turbulent fluxes and Ekman pumping. We demonstrate that the N15 was likely to have been supplied at the front by submesoscale circulations that were directly measured as intense vertical velocities ⩾100 m day−1 by a drifting acoustic Doppler current profiler that crossed a submesoscale surface temperature front. At the same time, a recently released tracer was subducted out of the mixed layer within 24 h of release, providing direct evidence that the frontal circulations were capable of accessing the reservoir of nutrients beneath the pycnocline. The susceptibility of the filament edge to submesoscale instabilities was demonstrated by O(1) Rossby numbers at horizontal scales of 1–10 km. The frontal circulations are consistent with instabilities arising from a wind-driven nonlinear Ekman buoyancy flux generated by the persistent northerly wind stress that has a down-front component at the northern edge of the inshore section of the filament. The prevalence of submesoscale instabilities and their associated vertical circulations are proposed to be a key mechanism operating at sub-grid scales and sustaining new production throughout the upwelling system

    The effect of deep oceanic flushing on water properties and ecosystem functioning within atolls in the British Indian Ocean Territory

    Get PDF
    Within atolls, deep water channels exert significant control over local hydrodynamic conditions; which are important drivers of planktonic distributions. To examine planktonic responses to oceanography, this study tested the effect of proximity and exposure to deep oceanic flushing through these channels on water properties and planktonic assemblages across four atolls (Diego Garcia, Salomon, Egmont, and Peros Banhos) in the British Indian Ocean Territory Marine Reserve. As this is the largest, most isolated and sparsely inhabited atoll complex in the world, it provides the perfect experimental conditions to test the effect of oceanic flushing without confounding factors related to anthropogenic development. Results are discussed in the context of ecosystem functioning. A total of 30 planktonic taxa and 19,539 individuals were identified and counted. Abundance was significantly different between atolls and significantly greater within inner regions in all atolls except southeast Egmont. Planktonic assemblage composition significantly differed between atolls and between inner and outer stations; exhibiting higher similarity between outer stations. Within outer stations of Diego Garcia, Peros Banhos, and Egmont, evidence suggesting oceanic flushing of cold, saline, and dense water was observed, however a longer time series is required to conclusively demonstrate tidal forcing of this water through deep water channels. Planktonic variability between inner and outer atoll regions demonstrates that broad comparisons between oceanic and lagoon regions fail to capture the complex spatial dynamics and hydrodynamic interactions within atolls. Better comprehension of these distributional patterns is imperative to monitor ecosystem health and functioning, particularly due to increasing global anthropogenic pressures related to climate change. The extensive coral bleaching described in this paper highlights this concern
    corecore