16 research outputs found

    Altered Gravity Induces Oxidative Stress in Drosophila Melanogaster

    Get PDF
    Altered gravity environments can induce increased oxidative stress in biological systems. Microarray data from our previous spaceflight experiment (FIT experiment on STS-121) indicated significant changes in the expression of oxidative stress genes in adult fruit flies after spaceflight. Currently, our lab is focused on elucidating the role of hypergravity-induced oxidative stress and its impact on the nervous system in Drosophila melanogaster. Biochemical, molecular, and genetic approaches were combined to study this effect on the ground. Adult flies (2-3 days old) exposed to acute hypergravity (3g, for 1 hour and 2 hours) showed significantly elevated levels of Reactive Oxygen Species (ROS) in fly brains compared to control samples. This data was supported by significant changes in mRNA expression of specific oxidative stress and antioxidant defense related genes. As anticipated, a stress-resistant mutant line, Indy302, was less vulnerable to hypergravity-induced oxidative stress compared to wild-type flies. Survival curves were generated to study the combined effect of hypergravity and pro-oxidant treatment. Interestingly, many of the oxidative stress changes that were measured in flies showed sex specific differences. Collectively, our data demonstrate that altered gravity significantly induces oxidative stress in Drosophila, and that one of the organs where this effect is evident is the brain

    Drosophila Habitat Developed to Support Research on the International Space Station

    Get PDF
    The Fruit Fly Lab is a hardware suite being designed to support research on the International Space Station (ISS) for use by the entire Drosophila research community. A validation mission will launch and return on SpaceX-5 in late 2014, followed by Principal Investigator-lead science flights thereafter. Space flight experiments are selected via peer-reviewed proposals open to the Drosophila community. The cassettes (containers) that will house the Drosophila cultures were successfully used to conduct an immunity study on the Space Shuttle. Results showed that the innate immune system of Drosophila melanogaster was affected by space flight with a reduction in phagocytosis function of plasmatocytes, changes in antimicrobial peptides and other gene expression levels, as well as changes in development of the animals. Scientific research topics that are of interest to NASA will be presented. Each cassette used to house the Drosophila has a removable food tray that can be replaced to sustain the growth of the culture, or can be transferred to another cassette, along with embryos and burrowed larvae, enabling multi-generational studies. The cassette can be frozen in the Minus Eighty Laboratory Freezer for ISS to preserve samples until post-flight analysis, expanding the applications of the hardware. Utilization of a centrifuge allows for on-orbit 1g controls for microgravity experiments, as well as variable g-levels for lunar or Mars environment studies. The standard form factor used also allows for implementation of modular upgrades. An observation system, circadian rhythm lighting system, and fixation capability are upgrades currently in development for near-term implementation. This hardware suite, with its flight- proven design and ability to utilize existing on-board facilities, offers the whole Drosophila research community a platform to address several key areas of the National Research Councils decadal survey, supporting the utilization of ISS for science discovery

    Chronic Hypergravity Induces Changes in the Dopaminergic Neuronal System in Drosophila Melanogaster

    Get PDF
    Upon atmospheric exitre-entry and during training, astronauts are subjected to temporary periods of hypergravity, which has been implicated in the activation of oxidative stress pathways contributing to mitochondrial dysfunction and neuronal degeneration. The pathogenesis of Parkinsons disease and other neurodegenerative disorders is associated with oxidative damage to neurons involved in dopamine systems of the brain. Our study aims to examine the effects of a hypergravitational developmental environment on the degeneration of dopaminergic systems in Drosophila melanogaster. Male and female flies (Gal4-UAS transgenic line) were hatched and raised to adulthood in centrifugal hypergravity (97rpm, 3g). The nuclear expression of the reporter, Green Fluorescent Protein (GFP) is driven by the dopaminergic enzyme tyrosine hydroxylase (TH) promoter, allowing for the targeted visualization of dopamine producing neurons. After being raised to adulthood and kept in hypergravity until 18 days of age, flies were dissected and the expression of TH was measured by fluorescence confocal microscopy. TH expression in the fly brains was used to obtain counts of healthy dopaminergic neurons for flies raised in chronic hypergravity and control groups. Dopaminergic neuron expression data were compared with those of previous studies that limited hypergravity exposure to late life in order to determine the flies adaptability to the gravitational environment when raised from hatching through adulthood. Overall, we observed a significant effect of chronic hypergravity exposure contributing to deficits in dopaminergic neuron expression (p 0.003). Flies raised in 3g had on average lower dopaminergic neuron counts (mean 97.7) when compared with flies raised in 1g (mean 122.8). We suspect these lower levels of TH expression are a result of oxidative dopaminergic cell loss in flies raised in hypergravity. In future studies, we hope to further elucidate the mechanism by which hypergravity-induced oxidative stress damages the dopaminergic neuronal system, as well as examining possible chemical countermeasures to the hypergravity-induced oxidative stress response in dopaminergic neurons in order to combat cell death and consequent mental and behavioral deficits

    Expression of Genes Involved in Drosophila Wing Morphogenesis and Vein Patterning Are Altered by Spaceflight

    Get PDF
    Imaginal wing discs of Drosophila melanogaster (fruit fly) defined during embryogenesis ultimately result in mature wings of stereotyped (specific) venation patterning. Major regulators of wing disc development are the epidermal growth factor receptor (EGF), Notch, Hedgehog (Hh), Wingless (Wg), and Dpp signaling pathways. Highly stereotyped vascular patterning is also characteristic of tissues in other organisms flown in space such as the mouse retina and leaves of Arabidopsis thaliana. Genetic and other adaptations of vascular patterning to space environmental factors have not yet been systematically quantified, despite widespread recognition of their critical importance for terrestrial and microgravity applications. Here we report changes in gene expression with space flight related to Drosophila wing morphogenesis and vein patterning. In addition, genetically modified phenotypes of increasingly abnormal ectopic wing venation in the Drosophila wing1 were analyzed by NASA's VESsel GENeration Analysis (VESGEN) software2. Our goal is to further develop insightful vascular mappings associated with bioinformatic dimensions of genetic or other molecular phenotypes for correlation with genetic and other molecular profiling relevant to NASA's GeneLab and other Space Biology exploration initiatives

    Transcriptomic response of Drosophila melanogaster pupae developed in hypergravity

    Get PDF
    Altered gravity can perturb normal development and induce corresponding changes in gene expression. Understanding this relationship between the physical environment and a biological response is important for NASA's space travel goals. We use RNA-Seq and qRT-PCR techniques to profile changes in early Drosophila melanogaster pupae exposed to chronic hypergravity (3 g, or three times Earth's gravity). During the pupal stage, D. melanogaster rely upon gravitational cues for proper development. Assessing gene expression changes in the pupae under altered gravity conditions helps highlight gravity-dependent genetic pathways. A robust transcriptional response was observed in hypergravity-treated pupae compared to controls, with 1513 genes showing a significant (q < 0.05) difference in gene expression. Five major biological processes were affected: ion transport, redox homeostasis, immune response, proteolysis, and cuticle development. This outlines the underlying molecular and biological changes occurring in Drosophila pupae in response to hypergravity; gravity is important for many biological processes on Earth

    Effects of Altered Gravity on the Central Nervous System of Drosophila melanogaster

    Get PDF
    A comprehensive understanding of the effects of spaceflight and altered gravity on human physiology is necessary for continued human space exploration and long-term space habitation. Spaceflight includes multiple factors such as microgravity, hypergravity, ionizing radiation, physiological stress, and disrupted circadian rhythms and these have been shown to contribute to pathophysiological responses that target immunity, bone and muscle integrity, cardiovascular and nervous systems. In terrestrial conditions, some of these factors can lead to cancer and neuroimmunological disorders. In this study, we used a well-established spaceflight model organism, Drosophila melanogaster, to assess spaceflight-associated changes in the nervous system. We hypothesize that exposure to altered gravity triggers the oxidative stress response, leading to impairments in the nervous system. To test this hypothesis, we used two experimental paradigms: 1) hypergravity, using the ground-based chronic acceleration model, and 2) spaceflight conditions, which includes exposure to microgravity and in-flight space 1g controls. In our ground studies, acute hypergravity resulted in an induction of oxidative stress-related genes with an increase in reactive oxygen species (ROS) in fly brains. Additionally, we observed a depressed locomotor phenotype in these flies (p<0.05). These flies also show a decreased dopaminergic neuron counts in the fly brain upon exposure to acute hypergravity (p<0.05). Thus, the data suggest that altered gravity has a profound effect on the fly nervous system. Similarly, we observe behavioral impairments (p<0.001) and synaptic deficits, including decreased synaptic connections (p<0.05), in 3rd instar larvae which were developed in space. Furthermore, space-grown adults show a decrease in neuronal (p<0.05) and dendritic field (p<0.01) in adult brains coupled with an increased number of apoptotic cells (p<0.001), suggesting increased neuronal loss under spaceflight conditions. In summary, we observe that altered gravity leads to gross neurological deficits. To better understand the long-term effects of spaceflight on the nervous system, longitudinal and multigenerational changes were also identified. This study will help elucidate the different approaches to prevent nervous system dysfunction in astronauts during spaceflight, while also contributing to a better understanding of the pathways that are related to some CNS disorders on Earth

    Spaceflight Causes Increased Virulence of Serratia Marcescens on a Drosophila Melanogaster Host

    Get PDF
    Drosophila melanogaster, or the fruit fly, has long been an important organism for Earth-based research, and is now increasingly utilized as a model system to understand the biological effects of spaceflight. Studies in Drosophila melanogaster have shown altered immune responses in 3rd instar larvae and adult males following spaceflight, changes similar to those observed in astronauts. In addition, spaceflight has also been shown to affect bacterial physiology, as evidenced by studies describing altered virulence of Salmonella typhimurium following spaceflight and variation in biofilm growth patterns for the opportunistic pathogen Pseudomonas aeruginosa during flight. We recently sent Serratia marcescens Db11, a Drosophila pathogen and an opportunistic human pathogen, to the ISS on SpaceX-5 (Fruit Fly Lab-01). S. marcescens samples were stored at 4degC for 24 days on-orbit and then allowed to grow for 120 hours at ambient station temperature before being returned to Earth. Upon return, bacteria were isolated and preserved in 50% glycerol or RNAlater. Storage, growth, and isolation for ground control samples were performed using the same procedures. Spaceflight and ground samples stored in 50% glycerol were diluted and injected into 5-7-day-old ground-born adult D. melanogaster. Lethality was significantly greater in flies injected with the spaceflight samples compared to those injected with ground bacterial samples. These results indicate a shift in the virulence profile of the spaceflight S. marcescens Db11 and will be further assessed with molecular biological analyses. Our findings strengthen the conclusion that spaceflight impacts the virulence of bacterial pathogens on model host organisms such as the fruit fly. This research was supported by NASA's ISS Program Office (ISSPO) and Space Life and Physical Sciences Research and Applications (SLPSRA)

    Prophylactic treatment with <i style="">Bacopa monnieri</i> leaf powder mitigates paraquat- induced oxidative perturbations and lethality in <i style="">Drosophila melanogaster</i>

    No full text
    75-82 Environmental exposure to the oxidant-producing herbicide, paraquat (PQ) (1, 1’-dimethyl-4, 4’-bipyridinium dichloride) has long been implicated as a risk factor in Parkinson’s disease (PD). PQ-induced oxidative stress has been exploited as a model to screen putative neuroprotective compounds employing Drosophila. In the present study, we investigated the prophylactic efficacy of Bacopa monnieri (BM) against PQ-induced oxidative stress, mitochondrial dysfunctions and lethality. Exposure of adult male flies (Oregon K) to PQ alone (40 mM in 5% sucrose) resulted in 50% mortality at 48 h. Prophylaxis (7 days) with BM extract (0.1%) offered significant protection (40%) against PQ-induced mortality. Further, oxidative impairments and mitochondrial dysfunctions were monitored among Drosophila exposed to PQ (20, 40 mM) for 24 h. Significant induction of oxidative stress was observed in terms of enhanced malondialdehyde and hydroperoxide levels, and elevated activities of antioxidant enzymes (catalase and SOD). Mitochondrial dysfunctions included of significant reduction in the activities of succinate dehydrogenase (23%), complex I-III (26%), and complex II-III (30%) enzymes. Interestingly, prophylaxis with BM extract prevented the oxidative stress induction by PQ and restored the activity of ETC complexes, suggesting clearly its specific effect on the mitochondria. While the precise mechanism of action of BM needs further investigations, it may be related to its ability to enhance antioxidant defences and thus mitigate PQ-induced oxidative stress in Drosophila. </smarttagtype

    Effects of Chronic Hypergravity on the Dopaminergic Neuronal System in Drosophila Melanogaster

    No full text
    Upon atmospheric exitre-entry and during training, astronauts are subjected to temporary periods of hypergravity, which has been implicated in the activation of oxidative stress pathways contributing to mitochondrial dysfunction and neuronal degeneration. The pathogenesis of Parkinsons disease and other neurodegenerative disorders is associated with oxidative damage to neurons involved in dopamine systems of the brain. Our study aims to examine the effects of a hypergravitational developmental environment on the degeneration of dopaminergic systems in Drosophila melanogaster. Male and female flies (Gal4-UAS transgenic line) were hatched and raised to adulthood in centrifugal hypergravity (97rpm, 3g). The nuclear expression of the reporter, Green Fluorescent Protein (GFP) is driven by the dopaminergic enzyme tyrosine hydroxylase (TH) promoter, allowing for the targeted visualization of dopamine producing neurons. After being raised to adulthood and kept in hypergravity until 18 days of age, flies were dissected and the expression of TH was measured by fluorescence confocal microscopy. TH expression in the fly brains was used to obtain counts of healthy dopaminergic neurons for flies raised in chronic hypergravity and control groups. Dopaminergic neuron expression data were compared with those of previous studies that limited hypergravity exposure to late life in order to determine the flies adaptability to the gravitational environment when raised from hatching through adulthood. Overall, we observed a significant effect of chronic hypergravity exposure contributing to deficits in dopaminergic neuron expression (p 0.003). Flies raised in 3g had on average lower dopaminergic neuron counts (mean 97.7) when compared with flies raised in 1g (mean 122.8). We suspect these lower levels of TH expression are a result of oxidative dopaminergic cell loss in flies raised in hypergravity. In future studies, we hope to further elucidate the mechanism by which hypergravity-induced oxidative stress damages the dopaminergic neuronal system, as well as examining possible chemical countermeasures to the hypergravity-induced oxidative stress response in dopaminergic neurons in order to combat cell death and consequent mental and behavioral deficits
    corecore