31 research outputs found

    FPGA fuzzy controller design for magnetic ball levitation

    Get PDF
    this paper presents a fuzzy controller design for nonlinear system using FPGA. A magnetic levitation system is considered as a case study and the fuzzy controller is designed to keep a magnetic object suspended in the air counteracting the weight of the object. Fuzzy controller will be implemented using FPGA chip. The design will use a high-level programming language HDL for implementing the fuzzy logic controller using the Xfuzzy tools to implement the fuzzy logic controller into HDL code. This paper, advocates a novel approach to implement the fuzzy logic controller for magnetic ball levitation system by using FPGA

    Design of Optimized Fuzzy logic Controller for Magnetic Levitation Using Genetic Algorithms

    Get PDF
    This paper presents an optimum approach for designing of fuzzy controller for nonlinear system using Genetic Algorithms (GA). In this paper, a magnetic levitation system is considered as a case study and the controller is designed to keep a magnetic object suspended in the air counteracting the weight of the object. Genetic Algorithm (GA) is used in this paper as optimization method that optimizes the membership, output gain and inputs gains of the fuzzy controllers. The proposed algorithms are implemented using Matlab and Simulin

    Hepatic venous outflow obstruction after living donor liver transplantation managed with ectopic placement of a foley catheter: A case report

    Get PDF
    AbstractIntroductionThe early hepatic venous outflow obstruction (HVOO) is a rare but serious complication after liver transplantation, which may result in graft loss. We report a case of early HVOO after living donor liver transplantation, which was managed by ectopic placement of foley catheter.PresentationA 51 years old male patient with end stage liver disease received a right hemi-liver graft. On the first postoperative day the patient developed impairment of the liver functions. Doppler ultrasound (US) showed absence of blood flow in the right hepatic vein without thrombosis. The decision was to re-explore the patient, which showed torsion of the graft upward and to the right side causing HVOO. This was managed by ectopic placement of a foley catheter between the graft and the diaphragm and the chest wall. Gradual deflation of the catheter was gradually done guided by Doppler US and the patient was discharged without complications.DiscussionMechanical HVOO results from kinking or twisting of the venous anastomosis due to anatomical mismatch between the graft and the recipient abdomen. It should be managed surgically by repositioning of the graft or redo of venous anastomosis. Several ideas had been suggested for repositioning and fixation of the graft by the use of Sengstaken–Blakemore tubes, tissue expanders, and surgical glove expander.ConclusionWe report the use of foley catheter to temporary fix the graft and correct the HVOO. It is a simple and safe way, and could be easily monitored and removed under Doppler US without any complications

    Infected pancreatic necrosis: outcomes and clinical predictors of mortality. A post hoc analysis of the MANCTRA-1 international study

    Get PDF
    : The identification of high-risk patients in the early stages of infected pancreatic necrosis (IPN) is critical, because it could help the clinicians to adopt more effective management strategies. We conducted a post hoc analysis of the MANCTRA-1 international study to assess the association between clinical risk factors and mortality among adult patients with IPN. Univariable and multivariable logistic regression models were used to identify prognostic factors of mortality. We identified 247 consecutive patients with IPN hospitalised between January 2019 and December 2020. History of uncontrolled arterial hypertension (p = 0.032; 95% CI 1.135-15.882; aOR 4.245), qSOFA (p = 0.005; 95% CI 1.359-5.879; aOR 2.828), renal failure (p = 0.022; 95% CI 1.138-5.442; aOR 2.489), and haemodynamic failure (p = 0.018; 95% CI 1.184-5.978; aOR 2.661), were identified as independent predictors of mortality in IPN patients. Cholangitis (p = 0.003; 95% CI 1.598-9.930; aOR 3.983), abdominal compartment syndrome (p = 0.032; 95% CI 1.090-6.967; aOR 2.735), and gastrointestinal/intra-abdominal bleeding (p = 0.009; 95% CI 1.286-5.712; aOR 2.710) were independently associated with the risk of mortality. Upfront open surgical necrosectomy was strongly associated with the risk of mortality (p < 0.001; 95% CI 1.912-7.442; aOR 3.772), whereas endoscopic drainage of pancreatic necrosis (p = 0.018; 95% CI 0.138-0.834; aOR 0.339) and enteral nutrition (p = 0.003; 95% CI 0.143-0.716; aOR 0.320) were found as protective factors. Organ failure, acute cholangitis, and upfront open surgical necrosectomy were the most significant predictors of mortality. Our study confirmed that, even in a subgroup of particularly ill patients such as those with IPN, upfront open surgery should be avoided as much as possible. Study protocol registered in ClinicalTrials.Gov (I.D. Number NCT04747990)

    Abstracts from the 3rd International Genomic Medicine Conference (3rd IGMC 2015)

    Get PDF

    FPGA Optimized Fuzzy Controller Design for Magnetic Ball Levitation Using Genetic Algorithms

    No full text
    This paper presents an optimum approach for designing of fuzzy controller for nonlinear system using FPGA technology with Genetic Algorithms (GA) optimization tool. A magnetic levitation system is considered as a case study and the fuzzy controller is designed to keep a magnetic object suspended in the air counteracting the weight of the object. Fuzzy controller will be implemented using FPGA chip. Genetic Algorithm (GA) is used in this paper as optimization method that optimizes the membership, output gain and inputs gains of the fuzzy controllers. The design will use a highlevel programming language HDL for implementing the fuzzy logic controller using the Xfuzzy tools to implement the fuzzy logic controller into HDL code. This paper, advocates a novel approach to implement the fuzzy logic controller for magnetic ball levitation system by using FPGA with GA
    corecore