1,150 research outputs found
X-34 Experimental Aeroheating at Mach 6 and 10
Critical technologies are being developed to support the goals of the NASA Office of Aeronautics and Space Transportation Technology Access to Space initiative for next-generation reusable space transportation systems. From the perspective of aerothermodynamic performance throughout the flight trajectory, the Reusable Launch Vehicle program incorporates conceptual analysis, ground-based testing, and computational fluid dynamics to provide flyable suborbital flight demonstrator vehicles. This report provides an overview of the hypersonic aeroheating wind tunnel test program conducted at the NASA Langley Research Center in support of one of these vehicles, the X-34 small reusable technology demonstrator program. Global surface heat transfer images, surface streamline patterns, and shock shapes were measured on 0.0153- and 0.0183-scale models of proposed X-34 flight vehicles at Mach 6 and 10 in air. The primary parametrics that were investigated include angles-of-attack from 0 to 35 deg. and freestream unit Reynolds numbers from 0.5 to 8 million per foot (which was sufficient to produce laminar, transitional, and turbulent heating data), both with and without control surface deflections. Comparisons of the experimental data to computational predictions are included, along with a discussion of the implications of some of the experimental flow features for the flight vehicle
Global Infrared Observations of Roughness Induced Transition on the Space Shuttle Orbiter
High resolution infrared observations made from a mobile ground based optical system captured the laminar-to-turbulent boundary layer transition process as it occurred during Space Shuttle Endeavour's return to earth following its final mission in 2011. The STS-134 imagery was part of a larger effort to demonstrate an emerging and reliable non-intrusive global thermal measurement capability and to complement a series of boundary layer transition flight experiments that were flown on the Shuttle. The STS-134 observations are believed to be the first time that the development and movement of a hypersonic boundary layer transition front has been witnessed in flight over the entire vehicle surface and in particular, at unprecedented spatial resolution. Additionally, benchmark surface temperature maps of the Orbiter lower surface collected over multiple flights and spanning a Mach range of 18 to 6 are now available and represent an opportunity for collaborative comparison with computational techniques focused on hypersonic transition and turbulence modeling. The synergy of the global temperature maps with the companion in-situ thermocouple measurements serve as an example of the effective leveraging of resources to achieve a common goal of advancing our understanding of the complex nature of high Mach number transition. It is shown that quantitative imaging can open the door to a multitude of national and international opportunities for partnership associated with flight-testing and subsequent validation of numerical simulation techniques. The quantitative imaging applications highlighted in this paper offer unique and complementary flight measurement alternatives and suggest collaborative instrumentation opportunities to advance the state of the art in transition prediction and maximize the return on investment in terms of developmental flight tests for future vehicle designs
A Vision of Quantitative Imaging Technology for Validation of Advanced Flight Technologies
Flight-testing is traditionally an expensive but critical element in the development and ultimate validation and certification of technologies destined for future operational capabilities. Measurements obtained in relevant flight environments also provide unique opportunities to observe flow phenomenon that are often beyond the capabilities of ground testing facilities and computational tools to simulate or duplicate. However, the challenges of minimizing vehicle weight and internal complexity as well as instrumentation bandwidth limitations often restrict the ability to make high-density, in-situ measurements with discrete sensors. Remote imaging offers a potential opportunity to noninvasively obtain such flight data in a complementary fashion. The NASA Hypersonic Thermodynamic Infrared Measurements Project has demonstrated such a capability to obtain calibrated thermal imagery on a hypersonic vehicle in flight. Through the application of existing and accessible technologies, the acreage surface temperature of the Shuttle lower surface was measured during reentry. Future hypersonic cruise vehicles, launcher configurations and reentry vehicles will, however, challenge current remote imaging capability. As NASA embarks on the design and deployment of a new Space Launch System architecture for access beyond earth orbit (and the commercial sector focused on low earth orbit), an opportunity exists to implement an imagery system and its supporting infrastructure that provides sufficient flexibility to incorporate changing technology to address the future needs of the flight test community. A long term vision is offered that supports the application of advanced multi-waveband sensing technology to aid in the development of future aerospace systems and critical technologies to enable highly responsive vehicle operations across the aerospace continuum, spanning launch, reusable space access and global reach. Motivations for development of an Agency level imagery-based measurement capability to support cross cutting applications that span the Agency mission directorates as well as meeting potential needs of the commercial sector and national interests of the Intelligence, Surveillance and Reconnaissance community are explored. A recommendation is made for an assessment study to baseline current imaging technology including the identification of future mission requirements. Development of requirements fostered by the applications suggested in this paper would be used to identify technology gaps and direct roadmapping for implementation of an affordable and sustainable next generation sensor/platform system
Thermographic Imaging of the Space Shuttle During Re-Entry Using a Near Infrared Sensor
High resolution calibrated near infrared (NIR) imagery of the Space Shuttle Orbiter was obtained during hypervelocity atmospheric re-entry of the STS-119, STS-125, STS-128, STS-131, STS-132, STS-133, and STS-134 missions. This data has provided information on the distribution of surface temperature and the state of the airflow over the windward surface of the Orbiter during descent. The thermal imagery complemented data collected with onboard surface thermocouple instrumentation. The spatially resolved global thermal measurements made during the Orbiter s hypersonic re-entry will provide critical flight data for reducing the uncertainty associated with present day ground-to-flight extrapolation techniques and current state-of-the-art empirical boundary-layer transition or turbulent heating prediction methods. Laminar and turbulent flight data is critical for the validation of physics-based, semi-empirical boundary-layer transition prediction methods as well as stimulating the validation of laminar numerical chemistry models and the development of turbulence models supporting NASA s next-generation spacecraft. In this paper we provide details of the NIR imaging system used on both air and land-based imaging assets. The paper will discuss calibrations performed on the NIR imaging systems that permitted conversion of captured radiant intensity (counts) to temperature values. Image processing techniques are presented to analyze the NIR data for vignetting distortion, best resolution, and image sharpness. Keywords: HYTHIRM, Space Shuttle thermography, hypersonic imaging, near infrared imaging, histogram analysis, singular value decomposition, eigenvalue image sharpnes
Entry, Descent, and Landing Aerothermodynamics: NASA Langley Experimental Capabilities and Contributions
A review is presented of recent research, development, testing and evaluation activities related to entry, descent and landing that have been conducted at the NASA Langley Research Center. An overview of the test facilities, model development and fabrication capabilities, and instrumentation and measurement techniques employed in this work is provided. Contributions to hypersonic/supersonic flight and planetary exploration programs are detailed, as are fundamental research and development activities
Regulation of steroidogenesis in a primary pigmented nodular adrenocortical disease-associated adenoma leading to virilization and subclinical Cushing's syndrome
Context: Primary pigmented nodular adrenocortical disease (PPNAD) can lead to steroid hormone overproduction. Mutations in the cAMP protein kinase A regulatory subunit type 1A (PRKAR1A) are causative of PPNAD. Steroidogenesis in PPNAD can be modified through a local glucocorticoid feed-forward loop. Objective: Investigation of regulation of steroidogenesis in a case of PPNAD with virilization. Materials and methods : A 33-year-old woman presented with primary infertility due to hyperandrogenism. Elevated levels of testosterone and subclinical ACTH-independent Cushing's syndrome led to the discovery of an adrenal tumor, which was diagnosed as PPNAD. In vivo evaluation of aberrantly expressed hormone receptors showed no steroid response to known stimuli. Genetic analysis revealed a PRKAR1A protein-truncating Q28X mutation. After adrenalectomy, steroid levels normalized. Tumor cells were cultured and steroid
Measurement of the cosmic ray spectrum above eV using inclined events detected with the Pierre Auger Observatory
A measurement of the cosmic-ray spectrum for energies exceeding
eV is presented, which is based on the analysis of showers
with zenith angles greater than detected with the Pierre Auger
Observatory between 1 January 2004 and 31 December 2013. The measured spectrum
confirms a flux suppression at the highest energies. Above
eV, the "ankle", the flux can be described by a power law with
index followed by
a smooth suppression region. For the energy () at which the
spectral flux has fallen to one-half of its extrapolated value in the absence
of suppression, we find
eV.Comment: Replaced with published version. Added journal reference and DO
- …