6,434 research outputs found

    A giant ring-like structure at 0.78<z<0.86 displayed by GRBs

    Get PDF
    According to the cosmological principle, Universal large-scale structure is homogeneous and isotropic. The observable Universe, however, shows complex structures even on very large scales. The recent discoveries of structures significantly exceeding the transition scale of 370 Mpc pose a challenge to the cosmological principle. We report here the discovery of the largest regular formation in the observable Universe; a ring with a diameter of 1720 Mpc, displayed by 9 gamma ray bursts (GRBs), exceeding by a factor of five the transition scale to the homogeneous and isotropic distribution. The ring has a major diameter of 43o43^o and a minor diameter of 30o30^o at a distance of 2770 Mpc in the 0.78<z<0.86 redshift range, with a probability of 2×10−62\times 10^{-6} of being the result of a random fluctuation in the GRB count rate. Evidence suggests that this feature is the projection of a shell onto the plane of the sky. Voids and string-like formations are common outcomes of large-scale structure. However, these structures have maximum sizes of 150 Mpc, which are an order of magnitude smaller than the observed GRB ring diameter. Evidence in support of the shell interpretation requires that temporal information of the transient GRBs be included in the analysis. This ring-shaped feature is large enough to contradict the cosmological principle. The physical mechanism responsible for causing it is unknown.Comment: Accepted for publication in MNRAS, 13 pages, 8 figures and 4 table

    Color-flavor locked strange matter

    Full text link
    We analyze how the CFL states in dense matter work in the direction of enhancing the parameter space for absolutely stable phases (strange matter). We find that the "CFL strange matter" phase can be the true ground state of hadronic matter for a much wider range of the parameters of the model (the gap of the QCD Cooper pairs Δ\Delta, the strange quark mass msm_s and the Bag Constant BB) than the state without any pairing, and derive a full equation of state and an accurate analytic approximation to the lowest order in Δ\Delta and msm_{s} which may be directly used for applications. The effects of pairing on the equation of state are found to be small (as previously expected) but not negligible and may be relevant for astrophysics.Comment: 5 pages, 2 figure

    Scaling Relations and Exponents in the Growth of Rough Interfaces Through Random Media

    Full text link
    The growth of a rough interface through a random media is modelled by a continuous stochastic equation with a quenched noise. By use of the Novikov theorem we can transform the dependence of the noise on the interface height into an effective temporal correlation for different regimes of the evolution of the interface. The exponents characterizing the roughness of the interface can thus be computed by simple scaling arguments showing a good agreement with recent experiments and numerical simulations.Comment: 4 pages, RevTex, twocolumns, two figures (upon request). To appear in Europhysics Letter

    Gauge theories as a geometrical issue of a Kaluza-Klein framework

    Full text link
    We present a geometrical unification theory in a Kaluza-Klein approach that achieve the geometrization of a generic gauge theory bosonic component. We show how it is possible to derive the gauge charge conservation from the invariance of the model under extra-dimensional translations and to geometrize gauge connections for spinors, thus we can introduce the matter just by free spinorial fields. Then, we present the applications to i)a pentadimensional manifold V4⊗S1V^{4}\otimes S^{1}, so reproducing the original Kaluza-Klein theory, unless some extensions related to the rule of the scalar field contained in the metric and the introduction of matter by spinors with a phase dependence from the fifth coordinate, ii)a seven-dimensional manifold V4⊗S1⊗S2V^{4}\otimes S^{1}\otimes S^{2}, in which we geometrize the electro-weak model by introducing two spinors for any leptonic family and quark generation and a scalar field with two components with opposite hypercharge, responsible of spontaneous symmetry breaking.Comment: 37 pages, no figure

    Synthesis, Comparative Characterization and Photocatalytic Application of SnO2/MWCNT Nanocomposite Materials

    Get PDF
    Two different preparation methods were developed to cover successfully multi-walled carbon nanotubes (MWCNT) with tin-dioxide (SnO2) nanoparticles using SnCl2.2H2O as precursor under different solvent conditions. The applied mass ratios of the components were 1:4, 1:8, 1:16, 1:32 and 1:64, respectively. As-prepared tin-dioxide coverages were characterized by TEM, SEM, SEM-EDX, Raman microscopy, BET and X-ray diffraction techniques. Photocatalytic efficiencies of selected composites were investigated in a self-made photoreactor, equipped with UV-A fluorescence lamps. Photocatalytic degradation of phenol solution was followed by using HPLC. Observations revealed that using hydrothermal method we can easily control the layer of SnO2 nanoparticles on the surface of MWCNTs. Using various solvents SnO2 nanoparticles with different morphologies formed. The nanocomposites have low photocatalytic efficiencies under conditions used generally (when lambda&gt;300 nm)

    Adsorption and diffusion of selenite on Boda Claystone Formation

    Get PDF
    This study provides adsorption and diffusion data of selenite on Boda Claystone Formation (BCF) which is a potential host rock of a deep geological disposal of high-level radioactive waste. The experiments were performed on two diverse core samples: one albitic claystone sample characteristic for the entire BCF and one pyrite containing sample sparsely occurring in BCF. The experiments were carried out under atmospheric conditions. Batch experiments were carried out to study the kinetics of adsorption at a high initial concentration (1.2 × 10−3 M), the adsorption isotherms and reversibility were investigated in the 10−10–10−3 M concentration range. Adsorption onto petrographic thin sections was done to study the elemental distribution on the microscale and the oxidation state of selenium. The maximum of the distribution coefficient was found as Kd ≈ 200 L/kg and a decrease was experienced around 10−6–10−7 M equilibrium concentration, which showed similarities to other argillaceous rocks. Isotopic exchange experiments revealed reversibility of selenite adsorption. Diffusion was studied with through-diffusion and in-diffusion experiments. Using X-ray fluorescence, despite a low initial concentration of 2.3 × 10−5 M in the in-diffusion experiment, a meaningful diffusion profile of selenium could be obtained, from which the selenite apparent diffusion coefficient Dappselenite = (1.5–4.3) × 10−14 m2/s and the selenite rock capacity factor αselenite = 1.4–2.2 were determined. As selenium species are redox sensitive the oxidation state of adsorbed species was studied with X-ray absorption near edge structure spectroscopy on Se–K edge. Adsorbed selenium remained in +IV oxidation state, however reduction was experienced on the pyritic sample

    The birth of strange stars: kinetics, hydrodynamics and phenomenology of supernovae and GRBs

    Get PDF
    We present a short review of strange quark matter in supernovae and related explosions, with particular attention to the issue of the propagation of the combustion in the dense stellar environment. We discuss the instabilities affecting the flame and present some new results of application to the turbulent regime. The transition to the distributed regime and further deflagration-to-detonation mechanism are addressed. Finally we show that magnetic fields may be important for this problem, because they modify the flame through the dispersion relations which characterize the instabilities. A tentative classification of explosive phenomena according to the value of the average local magnetic field affecting the burning and the type of stellar system in which this conversion is taking place is presented. As a general result, we conclude that "short" conversion timescales are always favored, since the burning falls in either the turbulent Rayleigh-Taylor (or even the distributed) regime, or perhaps in the detonation one. In both cases the velocity is several orders of magnitude larger than vlamv_{lam}, and therefore the latter is irrelevant in practice for this problem. Interesting perspectives for the study of this problem are still open and important issues need to be addressed.Comment: 23 pp., 1 .eps figur

    Unified dark energy thermodynamics: varying w and the -1-crossing

    Full text link
    We investigate, in a unified and general way, the thermodynamic properties of dark energy with an arbitrary, varying equation-of-state parameter w(a). We find that all quantities are well defined and regular for every w(a), including at the -1-crossing, with the temperature being negative in the phantom regime (w(a)-1). The density and entropy are always positive while the chemical potential can be arbitrary. At the -1-crossing, both temperature and chemical potential are zero. The temperature negativity can only be interpreted in the quantum framework. The regular behavior of all quantities at the -1-crossing, leads to the conclusion that such a crossing does not correspond to a phase transition, but rather to a smooth cross-over.Comment: 5 pages, version published in Class. Quant. Gra

    Design and development of the Australian and New Zealand (ANZ) myeloma and related diseases registry

    Get PDF
    © 2016 The Author(s). Background: Plasma cell dyscrasias (PCD) are a spectrum of disorders resulting from the clonal expansion of plasma cells, ranging from the pre-malignant condition monoclonal gammopathy of undetermined significance (MGUS) to multiple myeloma (MM). MM generates a significant burden of disease on the community and it is predicted that it will increase in both incidence and prevalence owing to an ageing population and longer survival secondary to new therapeutic options. Robust and comprehensive clinical data are currently lacking but are required to define current diagnostic, investigational and management patterns in Australia and New Zealand (ANZ) for comparison to both local and international guidelines for standards of care. A clinical registry can provide this information and subsequently support development of strategies to address any differences, including providing a platform for clinical trials. The Myeloma and Related Diseases Registry (MRDR) was developed to monitor and explore variations in practices, processes and outcomes in ANZ and provide benchmark outcomes nationally and internationally for PCD. This paper describes the MRDR aims, development and implementation and discusses challenges encountered in the process. Methods: The MRDR was established in 2012 as an online database for a multi-centre collaboration across ANZ, collecting prospective data on patients with a diagnosis of MGUS, MM, solitary plasmacytoma or plasma cell leukaemia. Development of the MRDR required multi-disciplinary team participation, IT and biostatistical support as well as financial resources. Results: More than 1250 patients have been enrolled at 23 sites to date. Here we describe how database development, data entry and securing ethics approval have been major challenges for participating sites and the coordinating centre, and our approaches to resolving them. Now established, the MRDR will provide clinically relevant and credible monitoring, therapy and 'real world' outcome data, to support the conduction of high quality studies. In addition, the Myeloma 1000 sub-study is establishing a repository of paired peripheral blood specimens from registry patients to study mechanisms underlying disease progression. Conclusion: Establishment of the MRDR has been challenging, but it is a valuable investment that will provide a platform for coordinated national and international collaboration for clinical research in PCD in ANZ
    • …
    corecore