2,154 research outputs found

    A method for constructing directional surface wave spectra from ICESat-2 altimetry

    Get PDF
    Sea ice is important for Earth's energy budget as it influences surface albedo and air–sea fluxes in polar regions. On its margins, waves heavily impact sea ice. Routine and repeat observations of waves in sea ice are currently lacking, and therefore a comprehensive understanding of how waves interact with sea ice and are attenuated by it is elusive. In this paper, we develop methods to separate the two-dimensional (2D) surface wave spectra from sea-ice height observations made by the ICESat-2 (IS2) laser altimeter, a polar-orbiting satellite. A combination of a linear inverse method, called generalized Fourier transform (GFT), to estimate the wave spectra along each beam and a Metropolis–Hastings (MH) algorithm to estimate the dominant wave's incident angle was developed. It allows us to estimate the 2D wave signal and its uncertainty from the high-density, unstructured ATL03 ICESat-2 photon retrievals. The GFT is applied to re-binned photon retrievals on 25 km segments for all six beams and outperforms a discrete Fourier transform (DFT) in accuracy while having fewer constraints on the data structure. The MH algorithm infers wave direction from beam pairs every 25 km using coherent crests of the most energetic waves. Assuming a dominant incident angle, both methods together allow a decomposition into 2D surface wave spectra with the advantage that the residual surface heights can potentially be attributed to other sea-ice properties. The combined GFT–MH method shows promise in routinely isolating waves propagating through sea ice in ICESat-2 data. We demonstrate its ability on a set of example ICESat-2 tracks, suggesting a detailed comparison against in situ data is necessary to understand the quality of retrieved spectra.</p

    Holography and Variable Cosmological Constant

    Full text link
    An effective local quantum field theory with UV and IR cutoffs correlated in accordance with holographic entropy bounds is capable of rendering the cosmological constant (CC) stable against quantum corrections. By setting an IR cutoff to length scales relevant to cosmology, one easily obtains the currently observed rho_Lambda ~ 10^{-47} GeV^4, thus alleviating the CC problem. It is argued that scaling behavior of the CC in these scenarios implies an interaction of the CC with matter sector or a time-dependent gravitational constant, to accommodate the observational data.Comment: 7 pages, final version accepted by PR

    Dark Energy and Neutrino Mass Limits from Baryogenesis

    Full text link
    In this brief report we consider couplings of the dark energy scalar, such as Quintessence to the neutrinos and discuss its implications in studies on the neutrino mass limits from Baryogenesis. During the evolution of the dark energy scalar, the neutrino masses vary, consequently the bounds on the neutrino masses we have here differ from those obtained before.Comment: 5 pages,3 figures. Version accepted for publication in Phys. Rev.

    How the Charge Can Affect the Formation of Gravastars

    Full text link
    In recent work we physically interpreted a special gravastar solution characterized by a zero Schwarzschild mass. In fact, in that case, none gravastar was formed and the shell expanded, leaving behind a de Sitter or a Minkowski spacetime, or collapsed without forming an event horizon, originating what we called a massive non-gravitational object. This object has two components of non zero mass but the exterior spacetime is Minkowski or de Sitter. One of the component is a massive thin shell and the other one is de Sitter spacetime inside. The total mass of this object is zero Schwarzschild mass, which characterizes an exterior vacuum spacetime. Here, we extend this study to the case where we have a charged shell. Now, the exterior is a Reissner-Nordstr\"om spacetime and, depending on the parameter ω=1γ\omega=1-\gamma of the equation of state of the shell, and the charge, a gravastar structure can be formed. We have found that the presence of the charge contributes to the stability of the gravastar, if the charge is greater than a critical value. Otherwise, a massive non-gravitational object is formed for small charges.Comment: 17 pages and 7 figures, several typos corrected, accepted for publication in JCA

    Radial stability analysis of the continuous pressure gravastar

    Full text link
    Radial stability of the continuous pressure gravastar is studied using the conventional Chandrasekhar method. The equation of state for the static gravastar solutions is derived and Einstein equations for small perturbations around the equilibrium are solved as an eigenvalue problem for radial pulsations. Within the model there exist a set of parameters leading to a stable fundamental mode, thus proving radial stability of the continuous pressure gravastar. It is also shown that the central energy density possesses an extremum in rho_c(R) curve which represents a splitting point between stable and unstable gravastar configurations. As such the rho_c(R) curve for the gravastar mimics the famous M(R) curve for a polytrope. Together with the former axial stability calculations this work completes the stability problem of the continuous pressure gravastar.Comment: 17 pages, 5 figures, References corrected, minor changes wrt v1, matches published versio

    Mass-Varying Neutrinos from a Variable Cosmological Constant

    Full text link
    We consider, in a completely model-independent way, the transfer of energy between the components of the dark energy sector consisting of the cosmological constant (CC) and that of relic neutrinos. We show that such a cosmological setup may promote neutrinos to mass-varying particles, thus resembling a recently proposed scenario of Fardon, Nelson, and Weiner (FNW), but now without introducing any acceleronlike scalar fields. Although a formal similarity of the FNW scenario with the variable CC one can be easily established, one nevertheless finds different laws for neutrino mass variation in each scenario. We show that as long as the neutrino number density dilutes canonically, only a very slow variation of the neutrino mass is possible. For neutrino masses to vary significantly (as in the FNW scenario), a considerable deviation from the canonical dilution of the neutrino number density is also needed. We note that the present `coincidence' between the dark energy density and the neutrino energy density can be obtained in our scenario even for static neutrino masses.Comment: 8 pages, minor corrections, two references added, to apear in JCA

    How does particulate organic matter (POM) swelling affect soil -water interactions and soil structural stability on different scales?

    Get PDF
    Particulate organic matter (POM), root mucilage and synthetic polymers are swellable polymeric substances (“hydrogels”) which form a three-dimensional polymer network between soil particles. On the one hand, hydrogels can alter soil hydrological properties via their strong influence on water holding capacity and soil wettability. On the other hand, it has been recently shown that the presence of swollen hydrogel structures between soil particles can significantly contribute to soil structural stability. However, until now, only model polymer hydrogels have been used, and the findings still need to be transferred to soils which contain natural swellable organic substances. In this study, we investigated how the swelling of different POM fractions in soil contributes to soil-water-hydrogel interactions and to soil structural stability on different scales. We assumed that the swelling of easily available inter-aggregate POM (frPOM) and occluded intra-aggregate POM (iPOM) differ in their contribution to soil structural stability. For this purpose, we investigated the structural stability and soil-water interactions of a silty sand soil in a 2x2 nested design comprising tilled and non-tilled as well as compost-fertilized and non-fertilized sub-treatments. POM fractions were isolated by soil density fractionation and subsequently characterized for their swelling and water binding properties. Soil-water interactions in terms of water distribution and water mobility were assessed by one- and two-dimensional 1H-NMR relaxometry and pulsed-field-gradient (PFG) NMR. Results from 1H‑NMR measurements were linked with soil structural stability measurements conducted on the micro- and macroscale using soil rheology, wet sieving and crushing tests. On the micro- and macroscale, soil structural stability was higher for compost-fertilized samples than for non-fertilized with different effects of tillage. This was especially related to the presence of frPOM- and iPOM-associated water which revealed a significantly higher viscosity than mineral pore water. On the microscale, frPOM showed the highest contribution to soil structural stability, whereas iPOM predominantly stabilized the soil structure on the macroscale. The relationships suggest that the spatial location and hence the swellability of organic structures in soil could explain the nature of hydrogel-induced soil structural stability

    Dynamical approach to chains of scatterers

    Full text link
    Linear chains of quantum scatterers are studied in the process of lengthening, which is treated and analysed as a discrete dynamical system defined over the manifold of scattering matrices. Elementary properties of such dynamics relate the transport through the chain to the spectral properties of individual scatterers. For a single-scattering channel case some new light is shed on known transport properties of disordered and noisy chains, whereas translationally invariant case can be studied analytically in terms of a simple deterministic dynamical map. The many-channel case was studied numerically by examining the statistical properties of scatterers that correspond to a certain type of transport of the chain i.e. ballistic or (partially) localised.Comment: 16 pages, 7 figure

    Quantum-classical correspondence on compact phase space

    Full text link
    We propose to study the L2L^2-norm distance between classical and quantum phase space distributions, where for the latter we choose the Wigner function, as a global phase space indicator of quantum-classical correspondence. For example, this quantity should provide a key to understand the correspondence between quantum and classical Loschmidt echoes. We concentrate on fully chaotic systems with compact (finite) classical phase space. By means of numerical simulations and heuristic arguments we find that the quantum-classical fidelity stays at one up to Ehrenfest-type time scale, which is proportional to the logarithm of effective Planck constant, and decays exponentially with a maximal classical Lyapunov exponent, after that time.Comment: 26 pages. 9 figures (31 .epz files), submitted to Nonlinearit

    H(z)H(z) diagnostics on the nature of dark energy

    Full text link
    The two dominant components of the cosmic budget today, pressureles matter and dark energy, may or may not be interacting with each other. Currently, both possibilities appear compatible with observational data. We propose several criteria based on the history of the Hubble factor that can help discern whether they are interacting and whether dark energy is phantom or quintessence in nature.Comment: 22 pages, 7 figures. Accepted for publication in IJMP
    corecore