39 research outputs found

    Reaction Calorimetry

    Get PDF
    U radu je dan sažet prikaz principa rada reakcijskih kalorimetara. Opisani su adijabatski kalorimetri te kalorimetri kondukcijskog i kompenzacijskog tipa. Uz kalorimetre zatvorenog tipa opisani su i kalorimetri perfuzijskog tipa. Iznesena je fizikalna osnovica načina mjerenja topline za svaki od navedenih tipova kalorimetara. Također su navedeni postupci kalibracije kalorimetara.This paper presents a short summary of the working principles of reaction calorimeters. A description of adiabatic and isoperibolic, conduction and compensation calorimeters of closed and perfusion type is given. Physical background to the heat measurement principles is presented along with instrument calibration procedures

    Flavylium dye as pH-tunable fluorescent and CD probe for double-stranded DNA and RNA

    Get PDF
    UIDB/50006/2020 ROTEIRO/0031/2013-PINFRA/22161/2016 HrZZ IP-2018-01-5475The interaction of 4′-(N,N-dimethylamino)-6-hydroxyflavylium cation with double stranded (ds-) DNA/RNA was studied by UV/Vis spectrophotometry, circular dichroism (CD), and also steady-state and time-resolved emission spectroscopies at neutral and weakly acidic conditions. At pH 5, the studied molecule, in its flavylium cationic form, showed considerable binding affinities (5 < logKs < 6) for all ds-DNA/RNA, contrary to chalcones forms (dominant at pH 7), which did not show binding to polynucleotides. Flavylium cation intercalated into ds-DNAs at variance to dominant groove aggregation within ds-RNA, which was reported by RNA-specific bisignate induced CD spectrum (ICD) bands. The intrinsically negligible fluorescence of flavylium was strongly increased upon the addition of DNA or RNA, whereby both the fluorescence intensity and emission lifetimes of complexes differed considerably: the strongest emission increase was observed for AU-RNA (detection limit estimated to 10 nM) followed by AT-DNAs and the much weaker effect of GC-DNAs. Both fluorescence sensitivity on the ds-DNA/RNA secondary structure and sequence-selective ICD bands make the flavylium–chalcones system an intriguing pH-switchable new probe for distinguishing between various polynucleotide sequences.publishersversionpublishe

    Reversibility of Membrane N-Glycome of HeLa Cells upon Treatment with Epigenetic Inhibitors

    Get PDF
    Glycans are essential regulators of protein function and are now in the focus of research in many physiological and pathophysiological processes. There are numerous modes of regulating their biosynthesis, including epigenetic mechanisms implicated in the expression of glyco- genes. Since N-glycans located at the cell membrane define intercellular communication as well as a cellular response to a given environment, we developed a method to preferentially analyze this fraction of glycans. The method is based on incorporation of living cells into polyacrylamide gels, partial denaturation of membrane proteins with 3 M urea and subsequent release of N-glycans with PNGase F followed by HPLC analysis. Using this newly developed method, we revealed multiple effects of epigenetic inhibitors Trichostatin A, sodium butyrate and zebularine on the composition of N- glycans in human cells. The induced changes were found to be reversible after inhibitor removal. Given that many epigenetic inhibitors are currently explored as a therapeutic strategy in treatment of cancer, wherein surface glycans play an important role, the presented work contributes to our understanding of their efficiency in altering the N-glycan profile of cancer cells in culture

    Complexation of Oxonium and Ammonium Ions by Lower-rim Calix[4]arene Amino Acid Derivatives

    Get PDF
    Complexation of oxonium and ammonium cations with two calix4arene amino acid derivatives, namely 5,11,17,23-tetra-tert-butyl-26,28,25,27-tetrakis-(O-methyl-D-α-phenylglycylcarbonylmethoxy)-calix[4]arene (1) and 5,11,17,23-tetra-tert-butyl-26,28,25,27-(O-methyl-L-leucylcarbonylmethoxy)calix[4]¬arene (2), in acetonitrile and methanol was studied by means of spectrophotometric and calorimetric titrations at 25 °C. The classical molecular dynamics simulations of the macrocycles and the corresponding complexes with NH4+ and H3O+ were carried out in order to investigate their possible structures in solution. The examined calix[4]arene derivatives were shown to be rather efficient binders for H3O+ cation and moderately efficient for NH4+ in acetonitrile, whereas the complexation of these cations in methanol could not be observed. The structures of the complexes obtained by means of molecular dynamics simulations suggested the involvement of ether and carbonyl oxygen atoms in the complexation of both NH4+ and H3O+. An inclusion of an acetonitrile molecule into the hydrophobic cavity of the free and complexed ligands was observed as well. The difference in binding affinities of 1 and 2 towards NH4+ and H3O+ ions could be explained by taking into account cation solvation, difference in their size and in the strength of hydrogen bonding between cations and the ligand binding sites. (doi: 10.5562/cca2172

    Synthesis of Fluorescent Diphenylanthracene-Based Calix[4]arene Derivatives and their Complexation with Alkali Metal Cations

    Get PDF
    Two novel fluorescent calix[4]arenes comprising diphenylanthracene moiety at the lower rim were synthetized and their complexation with alkali metal cations in acetonitrile/dichloromethane and methanol/dichloromethane mixtures (φ = 0.5) was studied experimentally and by classical molecular dynamics and quantum chemical calculations. The monosubstituted calixarene derivative (L1) proved to be a poor cation receptor, whereas the ester-based macrocycle (L2) exhibited rather high affinity towards lithium, sodium and potassium cations, particularly in MeCN/CH2Cl2. All complexation reactions were enthalpically controlled, whereby the overall stability was the largest in the case of sodium complex. The computational investigations provided an additional insight into the complexation properties and structures of complex species. The molecular dynamics simulations indicated the occurrence of inclusion of solvent molecules in the calixarene hydrophobic cavity of the free and complexed ligand, which was found to significantly affect the complexation equilibria. This work is licensed under a Creative Commons Attribution 4.0 International License
    corecore