659 research outputs found

    Intramucosal leiomyosarcoma of the stomach following hereditary retinoblastoma in childhood – a case report and review of the literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Leiomyosarcomas of the stomach are very rare. At the time of primary diagnosis the tumors are most often in advanced stage and the patients complain of abdominal pain due to large tumor size. Endosonographically, the tumors impress as submucous mass with suspicion to malignancy. Sarcomas following hereditary retinoblastoma in childhood are in generally located in the soft tissue. Structural alterations of the <it>retinoblastoma </it>gene (<it>RB1</it>) seem to be involved in the pathogenesis.</p> <p>Case presentation</p> <p>A 37-year-old german male suffered from reflux disorder. In endoscopic examination a small polypous tumor was detected in the stomach. The resection specimen revealed an intramucosal leiomyosarcoma. At the age of one year, the patient had a retinoblastoma.</p> <p>Conclusion</p> <p>This is the unique report of an intramucosal gastric leiomyosarcoma and the first account of a gastric leiomyosarcoma after retinoblastoma in childhood. A careful clinical follow-up is advised because of increased risk of developing further metachronous malignancies.</p

    Transcriptional Regulator CNOT3 Defines an Aggressive Colorectal Cancer Subtype.

    Get PDF
    Cancer cells exhibit dramatic alterations of chromatin organization at cis-regulatory elements, but the molecular basis, extent, and impact of these alterations are still being unraveled. Here, we identify extensive genome-wide modification of sites bearing the active histone mark H3K4me2 in primary human colorectal cancers, as compared with corresponding benign precursor adenomas. Modification of certain colorectal cancer sites highlighted the activity of the transcription factor CNOT3, which is known to control self-renewal of embryonic stem cells (ESC). In primary colorectal cancer cells, we observed a scattered pattern of CNOT3 expression, as might be expected for a tumor-initiating cell marker. Colorectal cancer cells exhibited nuclear and cytoplasmic expression of CNOT3, suggesting possible roles in both transcription and mRNA stability. We found that CNOT3 was bound primarily to genes whose expression was affected by CNOT3 loss, and also at sites modulated in certain types of colorectal cancers. These target genes were implicated in ESC and cancer self-renewal and fell into two distinct groups: those dependent on CNOT3 and MYC for optimal transcription and those repressed by CNOT3 binding and promoter hypermethylation. Silencing CNOT3 in colorectal cancer cells resulted in replication arrest. In clinical specimens, early-stage tumors that included >5% CNOT3(+) cells exhibited a correlation to worse clinical outcomes compared with tumors with little to no CNOT3 expression. Together, our findings implicate CNOT3 in the coordination of colonic epithelial cell self-renewal, suggesting this factor as a new biomarker for molecular and prognostic classification of early-stage colorectal cancer. Cancer Res; 77(3); 766-79. ©2016 AACR

    Stability study of a model for the Klein-Gordon equation in Kerr spacetime

    Full text link
    The current early stage in the investigation of the stability of the Kerr metric is characterized by the study of appropriate model problems. Particularly interesting is the problem of the stability of the solutions of the Klein-Gordon equation, describing the propagation of a scalar field of mass μ\mu in the background of a rotating black hole. Rigorous results proof the stability of the reduced, by separation in the azimuth angle in Boyer-Lindquist coordinates, field for sufficiently large masses. Some, but not all, numerical investigations find instability of the reduced field for rotational parameters aa extremely close to 1. Among others, the paper derives a model problem for the equation which supports the instability of the field down to a/M0.97a/M \approx 0.97.Comment: Updated version, after minor change

    Performance of Monolayer Graphene Nanomechanical Resonators with Electrical Readout

    Full text link
    The enormous stiffness and low density of graphene make it an ideal material for nanoelectromechanical (NEMS) applications. We demonstrate fabrication and electrical readout of monolayer graphene resonators, and test their response to changes in mass and temperature. The devices show resonances in the MHz range. The strong dependence of the resonant frequency on applied gate voltage can be fit to a membrane model, which yields the mass density and built-in strain. Upon removal and addition of mass, we observe changes in both the density and the strain, indicating that adsorbates impart tension to the graphene. Upon cooling, the frequency increases; the shift rate can be used to measure the unusual negative thermal expansion coefficient of graphene. The quality factor increases with decreasing temperature, reaching ~10,000 at 5 K. By establishing many of the basic attributes of monolayer graphene resonators, these studies lay the groundwork for applications, including high-sensitivity mass detectors

    Screening of DUB activity and specificity by MALDI-TOF mass spectrometry

    Get PDF
    Deubiquitylases (DUBs) are key regulators of the ubiquitin system which cleave ubiquitin moieties from proteins and polyubiquitin chains. Several DUBs have been implicated in various diseases and are attractive drug targets. We have developed a sensitive and fast assay to quantify in vitro DUB enzyme activity using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Unlike other current assays, this method uses unmodified substrates, such as diubiquitin topoisomers. By analyzing 42 human DUBs against all diubiquitin topoisomers we provide an extensive characterization of DUB activity and specificity. Our results confirm the high specificity of many members of the OTU and JAMM DUB families and highlight that all USPs tested display low linkage selectivity. We also demonstrate that this assay can be deployed to assess the potency and specificity of DUB inhibitors by profiling 11 compounds against a panel of 32 DUBs

    Olfactory perireceptor and receptor events in moths: a kinetic model revised

    Get PDF
    Modelling reveals that within about 3 ms after entering the sensillum lymph, 17% of total pheromone is enzymatically degraded while 83% is bound to the pheromone-binding protein (PBP) and thereby largely protected from enzymatic degradation. The latter proceeds within minutes, 20,000-fold more slowly than with the free pheromone. In vivo the complex pheromone–PBP interacts with the receptor molecule. At weak stimulation the half-life of the active complex is 0.8 s due to the postulated pheromone deactivation. Most likely this process is enzymatically catalysed; it changes the PBP into a scavenger form, possibly by interference with the C-terminus. The indirectly determined PBP concentration (3.8 mM) is close to direct measurements. The calculated density of receptor molecules within the plasma membrane of the receptor neuron reaches up to 6,000 units per μm2. This is compared with the estimated densities of the sensory-neuron membrane protein and of ion channels. The EC50 of the model pheromone–PBP complex interacting with the receptor molecules is 6.8 μM, as compared with the EC50 = 1.5 μM of bombykol recently determined using heterologous expression. A possible mechanism widening the range of stimulus intensities covered by the dose–response curve of the receptor-potential is proposed

    3D flow in the venom channel of a spitting cobra: do the ridges in the fangs act as fluid guide vanes?

    Get PDF
    The spitting cobra Naja pallida can eject its venom towards an offender from a distance of up to two meters. The aim of this study was to understand the mechanisms responsible for the relatively large distance covered by the venom jet although the venom channel is only of micro-scale. Therefore, we analysed factors that influence secondary flow and pressure drop in the venom channel, which include the physical-chemical properties of venom liquid and the morphology of the venom channel. The cobra venom showed shear-reducing properties and the venom channel had paired ridges that span from the last third of the channel to its distal end, terminating laterally and in close proximity to the discharge orifice. To analyze the functional significance of these ridges we generated a numerical and an experimental model of the venom channel. Computational fluid dynamics (CFD) and Particle-Image Velocimetry (PIV) revealed that the paired interior ridges shape the flow structure upstream of the sharp 90° bend at the distal end. The occurrence of secondary flow structures resembling Dean-type vortical structures in the venom channel can be observed, which induce additional pressure loss. Comparing a venom channel featuring ridges with an identical channel featuring no ridges, one can observe a reduction of pressure loss of about 30%. Therefore it is concluded that the function of the ridges is similar to guide vanes used by engineers to reduce pressure loss in curved flow channels

    Major Role for Amphotericin B–Flucytosine Combination in Severe Cryptococcosis

    Get PDF
    BACKGROUND: The Infectious Diseases Society of America published in 2000 practical guidelines for the management of cryptococcosis. However, treatment strategies have not been fully validated in the various clinical settings due to exclusion criteria during therapeutic trials. We assessed here the optimal therapeutic strategies for severe cryptococcosis using the observational prospective CryptoA/D study after analyzing routine clinical care of cryptococcosis in university or tertiary care hospitals. METHODOLOGY/PRINCIPAL FINDINGS: Patients were enrolled if at least one culture grew positive with Cryptococcus neoformans. Control of sterilization was warranted 2 weeks (Wk2) and 3 months (Mo3) after antifungal therapy onset. 208 HIV-positive or -negative adult patients were analyzed. Treatment failure (death or mycological failure) at Wk2 and Mo3 was the main outcome measured. Combination of amphotericin B+flucytosine (AMB+5FC) was the best regimen for induction therapy in patients with meningoencephalitis and in all patients with high fungal burden and abnormal neurology. In those patients, treatment failure at Wk2 was 26% in the AMB+5FC group vs. 56% with any other treatments (p<0.001). In patients treated with AMB+5FC, factors independently associated with Wk2 mycological failure were high serum antigen titer (OR [95%CI] = 4.43[1.21-16.23], p = 0.025) and abnormal brain imaging (OR = 3.89[1.23-12.31], p = 0.021) at baseline. Haematological malignancy (OR = 4.02[1.32-12.25], p = 0.015), abnormal neurology at baseline (OR = 2.71[1.10-6.69], p = 0.030) and prescription of 5FC for less than 14 days (OR = 3.30[1.12-9.70], p = 0.030) were independently associated with treatment failure at Mo3. CONCLUSION/SIGNIFICANCE: Our results support the conclusion that induction therapy with AMB+5FC for at least 14 days should be prescribed rather than any other induction treatments in all patients with high fungal burden at baseline regardless of their HIV serostatus and of the presence of proven meningoencephalitis

    The "Snacking Child" and its social network: some insights from an italian survey

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The hypothesis underlying this work is that the social network of a child might have an impact on the alimentary behaviors, in particular for what concerns snack consumption patterns.</p> <p>Methods</p> <p>1215 Italian children 6-10 ys old were interviewed using a CATI facility in January 2010. 608 "snackers" and 607 "no-snackers" were identified. Information regarding family composition, child and relatives BMI, mother perception of child weight, child, father and mother physical activity, TV watching, social network, leisure time habits and dietary habits of peers, were collected. Association of variables with the status of snacker was investigated using a multivariable logistic regression model.</p> <p>Results</p> <p>Snackers children seem to be part of more numerous social network (1.40 friends vs 1.14, p = 0.042) where the majority of peers are also eating snacks, this percentage being significantly higher (89.5 vs 76.3, p < 0.001) than in the "no-snacker" group. The snacking group is identified by the fact that it tends to practice at least 4 hours per week of physical activity (OR: 1.36, CI: 1.03-1.9). No evidence of an association between snacking consumption and overweight status has been shown by our study.</p> <p>Conclusions</p> <p>The snacking child has more active peer-to-peer social relationships, mostly related with sport activities. However, spending leisure time in sportive activities implies being part of a social environment which is definitely a positive one from the point of view of obesity control, and indeed, no increase of overweight/obesity is seen in relation to snack consumption.</p
    corecore