7,522 research outputs found

    Otto Stern (1888-1969): The founding father of experimental atomic physics

    Full text link
    We review the work and life of Otto Stern who developed the molecular beam technique and with its aid laid the foundations of experimental atomic physics. Among the key results of his research are: the experimental determination of the Maxwell-Boltzmann distribution of molecular velocities (1920), experimental demonstration of space quantization of angular momentum (1922), diffraction of matter waves comprised of atoms and molecules by crystals (1931) and the determination of the magnetic dipole moments of the proton and deuteron (1933).Comment: 39 pages, 8 figure

    Molecfit: A general tool for telluric absorption correction II. Quantitative evaluation on ESO-VLT X-Shooter spectra

    Full text link
    Context: Absorption by molecules in the Earth's atmosphere strongly affects ground-based astronomical observations. The resulting absorption line strength and shape depend on the highly variable physical state of the atmosphere, i.e. pressure, temperature, and mixing ratio of the different molecules involved. Usually, supplementary observations of so-called telluric standard stars (TSS) are needed to correct for this effect, which is expensive in terms of telescope time. We have developed the software package molecfit to provide synthetic transmission spectra based on parameters obtained by fitting narrow ranges of the observed spectra of scientific objects. These spectra are calculated by means of the radiative transfer code LBLRTM and an atmospheric model. In this way, the telluric absorption correction for suitable objects can be performed without any additional calibration observations of TSS. Aims: We evaluate the quality of the telluric absorption correction using molecfit with a set of archival ESO-VLT X-Shooter visible and near-infrared spectra. Methods: Thanks to the wavelength coverage from the U to the K band, X-Shooter is well suited to investigate the quality of the telluric absorption correction with respect to the observing conditions, the instrumental set-up, input parameters of the code, the signal-to-noise of the input spectrum, and the atmospheric profiles. These investigations are based on two figures of merit, I_off and I_res, that describe the systematic offsets and the remaining small-scale residuals of the corrections. We also compare the quality of the telluric absorption correction achieved with moelcfit to the classical method based on a telluric standard star. (Abridged)Comment: Acc. by A&A; Software available via ESO: http://www.eso.org/sci/software/pipelines/skytools

    GRB 030329: 3 years of radio afterglow monitoring

    Full text link
    Radio observations of gamma-ray burst (GRB) afterglows are essential for our understanding of the physics of relativistic blast waves, as they enable us to follow the evolution of GRB explosions much longer than the afterglows in any other wave band. We have performed a three-year monitoring campaign of GRB 030329 with the Westerbork Synthesis Radio Telescopes (WSRT) and the Giant Metrewave Radio Telescope (GMRT). Our observations, combined with observations at other wavelengths, have allowed us to determine the GRB blast wave physical parameters, such as the total burst energy and the ambient medium density, as well as investigate the jet nature of the relativistic outflow. Further, by modeling the late-time radio light curve of GRB 030329, we predict that the Low-Frequency Array (LOFAR, 30-240 MHz) will be able to observe afterglows of similar GRBs, and constrain the physics of the blast wave during its non-relativistic phase.Comment: 5 pages, 2 figures, Phil. Trans. R. Soc. A, vol.365, p.1241, proceedings of the Royal Society Scientific Discussion Meeting, London, September 200

    Dissecting magnetar variability with Bayesian hierarchical models

    Get PDF
    Neutron stars are a prime laboratory for testing physical processes under conditions of strong gravity, high density, and extreme magnetic fields. Among the zoo of neutron star phenomena, magnetars stand out for their bursting behaviour, ranging from extremely bright, rare giant flares to numerous, less energetic recurrent bursts. The exact trigger and emission mechanisms for these bursts are not known; favoured models involve either a crust fracture and subsequent energy release into the magnetosphere, or explosive reconnection of magnetic field lines. In the absence of a predictive model, understanding the physical processes responsible for magnetar burst variability is difficult. Here, we develop an empirical model that decomposes magnetar bursts into a superposition of small spike-like features with a simple functional form, where the number of model components is itself part of the inference problem. The cascades of spikes that we model might be formed by avalanches of reconnection, or crust rupture aftershocks. Using Markov Chain Monte Carlo (MCMC) sampling augmented with reversible jumps between models with different numbers of parameters, we characterise the posterior distributions of the model parameters and the number of components per burst. We relate these model parameters to physical quantities in the system, and show for the first time that the variability within a burst does not conform to predictions from ideas of self-organised criticality. We also examine how well the properties of the spikes fit the predictions of simplified cascade models for the different trigger mechanisms.Comment: accepted for publication in The Astrophysical Journal; code available at https://bitbucket.org/dhuppenkothen/magnetron, data products at http://figshare.com/articles/SGR_J1550_5418_magnetron_data/129242

    The hidden X-ray breaks in afterglow light curves

    Get PDF
    Gamma-Ray Burst (GRB) afterglow observations in the Swift era have a perceived lack of achromatic jet breaks compared to the BeppoSAX, or pre-Swift era. Specifically, relatively few breaks, consistent with jet breaks, are observed in the X-ray light curves of these bursts. If these breaks are truly missing, it has serious consequences for the interpretation of GRB jet collimation and energy requirements, and the use of GRBs as standard candles. Here we address the issue of X-ray breaks which are possibly 'hidden' and hence the light curves are misinterpreted as being single power-laws. We show how a number of precedents, including GRB 990510 & GRB 060206, exist for such hidden breaks and how, even with the well sampled light curves of the Swift era, these breaks may be left misidentified. We do so by synthesising X-ray light curves and finding general trends via Monte Carlo analysis. Furthermore, in light of these simulations, we discuss how to best identify achromatic breaks in afterglow light curves via multi-wavelength analysis.Comment: 4 pages, contributed talk, submitted to the proceedings of Gamma Ray Bursts 2007, Santa Fe, New Mexico, November 5-9 200

    Growth and production of Bullia rhodostoma on an open sandy beach in Algoa Bay

    Get PDF
    The plough shell, Bullia rhodostoma (Mollusca: Gastropoda), has been studied on an open sandy beach where it is a common scavenger. Samples taken over a year indicate hatching of young individuals from December to February. They reach a length of about 10 mm after 1 year and 40 mm after 10 years. The von Bertalanffy growth equation is Lt = 47 (1 - e-0,19(t+0,23)) and the annual mortality rate is 0,79. Mean decalcified dry biomass is 209 mg m-2 and production by growth 189 mg m-2 y-1 giving a P/B of 0,9. Most production by adults (>15 mm shell length) goes into reproduction, particularly In the females which grow larger than the males. Production by reproduction is estimated to be about 135 mg m-2 y-1. Average calorific values are 19,04 kJ g-1 dry tissueDie ploegskulp, Bullia rhodostoma (Mollusca: Gastropoda), is op 'n oop sandstrand bestudeer waar dit 'n algemeen teenwoordige aasvreter is. Monsters wat oor 'n jaar geneem is, dui aan dat die jong individue tussen Desember en Februarie uitbroei. Hulle bereik 'n lengte van ongeveer 10 mm na 1 jaar en 40 mm na 10 jaar. Die Von Bertalanffy groeivergelyking is Lt = 47 (1 - e-0,19(t+0,23))) en die jaarlikse mortaliteitstempo is 0,79. Gemiddelde kalklose drofi biomassa is 209 mg m-2 y-1 wat 'n P/B van 0,9 gee. Die meeste volwasse (>15 mm skulplengte) produksie is in die vorm van voortplanting, veral in die wyfies wat groter as die mannetjies word. Produksie deur voortplanting is omtrent 135 mg m-2 y-1 Gemiddelde kaloriewaardes is 19,04 kJ g-1 droe weefsel

    Differential diagnoses of fibrosing lung diseases

    Get PDF
    Objectives: To describe the challenges inherent in diagnosing fibrosing lung diseases (FLD) on CT imaging and methodologies by which the diagnostic process may be simplified. / Methods: Extensive searches in online scientific databases were performed to provide relevant and contemporary evidence that describe the current state of knowledge related to FLD diagnosis. This includes descriptions of the utility of a working diagnosis for an individual case discussed in a multidisciplinary team (MDT) setting and challenges associated with the lack of consensus guidelines for diagnosing chronic hypersensitivity pneumonitis. / Results: As well as describing imaging features that indicate the presence of a fibrosing lung disease, those CT characteristics that nuance a diagnosis of the various FLDs are considered. The review also explains the essential information that a radiologist needs to convey to an MDT when reading a CT scan. Lastly, we provide some insights as to the future directions the field make take in the upcoming years. / Conclusions: This review outlines the current state of FLD diagnosis and emphasizes areas where knowledge is limited, and more evidence is required. Fundamentally, however, it provides a guide for radiologists when tackling CT imaging in a patient with FLD. / Advances in knowledge: This review encompasses advice from recent guideline statements and evidence from the latest studies in FLD to provide an up-to-date manual for radiologists to aid the diagnosis of FLD on CT imaging in an MDT setting

    Round and Communication Balanced Protocols for Oblivious Evaluation of Finite State Machines

    Get PDF
    We propose protocols for obliviously evaluating finite-state machines, i.e., the evaluation is shared between the provider of the finite-state machine and the provider of the input string in such a manner that neither party learns the other's input, and the states being visited are hidden from both. For alphabet size Σ|\Sigma|, number of states Q|Q|, and input length nn, previous solutions have either required a number of rounds linear in nn or communication Ω(nΣQlogQ)\Omega(n|\Sigma||Q|\log|Q|). Our solutions require 2 rounds with communication O(n(Σ+QlogQ))O(n(|\Sigma|+|Q|\log|Q|)). We present two different solutions to this problem, a two-party one and a setting with an untrusted but non-colluding helper
    corecore