44 research outputs found

    Toward a unified set of low-thrust mission analysis techniques Interim report

    Get PDF
    Low thrust mission analysis and computer program

    A study of the optimization method used in the NAVY/NASA gas turbine engine computer code

    Get PDF
    Sources of numerical noise affecting the convergence properties of the Powell's Principal Axis Method of Optimization in the NAVY/NASA gas turbine engine computer code were investigated. The principal noise source discovered resulted from loose input tolerances used in terminating iterations performed in subroutine CALCFX to satisfy specified control functions. A minor source of noise was found to be introduced by an insufficient number of digits in stored coefficients used by subroutine THERM in polynomial expressions of thermodynamic properties. Tabular results of several computer runs are presented to show the effects on program performance of selective corrective actions taken to reduce noise

    SWINGBY - A low thrust interplanetary swingby trajectory optimization program, volume 2 Final report

    Get PDF
    Segmented two-body low thrust interplanetary swingby trajectory and performance optimization progra

    Selected solar electric propulsion and ballistic missions studies

    Get PDF
    Selected missions using solar electric propulsion and conventional propulsion systems were studied. The accomplishment of the tasks required extensive modification of the trajectory optimization computer program HILTOP. In addition to adding new program features, HILTOP was completely restructured to reduce execution time. The specific mission studies reported on are the direct and Venus swingby missions to the comet Encke and solar electric propulsion missions to Encke and to a distance of 0.25 AU from the sun

    HILTOP supplement: Heliocentric interplanetary low thrust trajectory optimization program, supplement 1

    Get PDF
    Modifications and improvements are described that were made to the HILTOP electric propulsion trajectory optimization computer program during calendar years 1973 and 1974. New program features include the simulation of power degradation, housekeeping power, launch asymptote declination optimization, and powered and unpowered ballistic multiple swingby missions with an optional deep space burn

    Heliocentric interplanetary low thrust trajectory optimization program, supplement 1, part 2

    Get PDF
    The improvements made to the HILTOP electric propulsion trajectory computer program are described. A more realistic propulsion system model was implemented in which various thrust subsystem efficiencies and specific impulse are modeled as variable functions of power available to the propulsion system. The number of operating thrusters are staged, and the beam voltage is selected from a set of five (or less) constant voltages, based upon the application of variational calculus. The constant beam voltages may be optimized individually or collectively. The propulsion system logic is activated by a single program input key in such a manner as to preserve the HILTOP logic. An analysis describing these features, a complete description of program input quantities, and sample cases of computer output illustrating the program capabilities are presented

    Heliocentric interplanetary low thrust trajectory optimization program, supplement 1

    Get PDF
    The modifications and improvements made to the HILTOP electric propulsion trajectory optimization computer program up through the end of 1974 is described. New program features include the simulation of power degradation, housekeeping power, launch asymptote declination optimization, and powered and unpowered ballistic multiple swingby missions with an optional deep space burn. The report contains the new analysis describing these features, a complete description of program input quantities, and sample cases of computer output illustrating the new program capabilities

    Solar electric propulsion mission requirements study Final report

    Get PDF
    Analysis of solar electric propulsion for unmanned exploration of solar syste

    Program manual for ASTOP, an Arbitrary space trajectory optimization program

    Get PDF
    The ASTOP program (an Arbitrary Space Trajectory Optimization Program) designed to generate optimum low-thrust trajectories in an N-body field while satisfying selected hardware and operational constraints is presented. The trajectory is divided into a number of segments or arcs over which the control is held constant. This constant control over each arc is optimized using a parameter optimization scheme based on gradient techniques. A modified Encke formulation of the equations of motion is employed. The program provides a wide range of constraint, end conditions, and performance index options. The basic approach is conducive to future expansion of features such as the incorporation of new constraints and the addition of new end conditions

    Study to document low thrust trajectory optimization programs HILTOP and ASTOP

    Get PDF
    Detailed documentation of the HILTOP and ASTOP computer programs is presented along with results of the analyses of the possible extension of the HILTOP program and results of an extra-ecliptic mission study performed with HILTOP
    corecore