General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

HILTOP SUPPLEMENT
 HELIOCENTRIC INTERPLANETARY LOW THRUST TRAJECTORY OPTIMIZATION PROGRAM

SUPPLEMENT \#1

F.I. Mann
J.L. Horsewood

FINAL REPORT
Part 2 of 2
Contract NAS 3-20950

February 1978
prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
 Lewis Research Center
 Cleveland, Ohio 44135

by

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC. 10210 Greenbelt Road, Suite 440 Seabrook, Maryland 20801

This report is the first supplement to the currently existing primary HILTOP program document [1] and describes the improvements made to the HILTOP electric propulsion trajectory optimization computer program since the publication of the primary document.

A new, more realistic propulsion system model has been implemented in the program, in which various thrust subsystem efficiencies and specific impulse are modeled as variable functions of power availatle to the propulsion system. The number of operating thrusters are staged, and the beam voltage is selected from a set of five (or less) constant voltages, based upon the application of variational calculus. The constant beam voltages may be ioptimized individually or collectively.

The new propulsion system logic is activated by a single program input key in such a manner as to preserve the old HILTOP logic.

The report contains the new analysis describing these features, a complete description of program input quantities, and sample cases of computer output illustrating the new program capabilities.
Page iii
NOMENCLATURE vii
1.0 INTRODUCTION 1
2.0 FORMULATION 3
2.1 Spacecraft and Trajectory Models 3
2.1.1 Spacecraft Mass Components 3
2.1.2 Electric Propulsion System 4
2.1.3 Differential Equations 12
2.7.4 Optimality Conditions 17
2.2 Boundary and Transversality Conditions 24
2.3 Auxiliary Computations 29
2.3.1 Additional Block Print Variables 29
?.3.2 Additional Extremum Point Summary Print 31
3.0 PROGRAM INPUT 33
3.1 Namelist 33
3.2 Definjtions of Input Parameters 34
3.3 Default Values of Input Parameters. 56
4.0 SAMPLE PROBLEM 59
5.0 PROGRAM INSTALLATION AT LERC 75
6.0 REFERENCES: 81
APPENDIX A: SPACECRAFT POWER FLOW DIAGRAM 83
APPENDIX B: INITIALIZATION OF ENGINE PARAMETERS 85

Generally, upper-case symbols denote vectors and lower-case symbols denote scalars. Lower-case symbois with bars denote unit vectors. The abbreviations EPS for electric propulsion system and BVP for boundary value problem are used.
a EPS instantaneous thrust acceleration, expressions (22) and (35); semi-major axis
$a_{c} \quad$ Semi-major axis of primary-target capture orbit
$a_{i} \quad$ Solar power law coefficients
$\left.\begin{array}{l}\bar{a}_{1} \\ \bar{a}_{2}\end{array}\right\} \quad$ Arbitrary unit vectors used in (132) and (139) of [1]
b A coefficient in the efficiency law of the old spacecraft model; auxiliary quantity defined by (29)
$\left.\begin{array}{l}b_{7} \\ b_{2} \\ b_{3}\end{array}\right\} \quad$ Launch vehicle coefficients
C Vector constant of optimal rocket problem, expression (63) of [1]
C^{0} Radjans-to-degrees conversion factor
$\mathrm{C}_{1} \quad$ Zeroth-order term in expansion for thrust reduction factor, expression (12)
$\mathrm{C}_{2} \quad$ Coefficient in first-order term in expansion for thrust reduction factor, expression (12)
$C_{3} \quad$ Constant in expression (13) or (14) for η_{u}
C_{4} Constant in expression (13) or (14) for η_{u}
$C_{5} \quad$ Ratio of accelerator current to beam current, as used in (15) and (16)
$C_{6} \quad$ Zeroth-order term in expansion for screen supply efficiency, expression (17)
$C_{j} \quad$ Coefficient, in first-order term in expansion for screen suppiy efficiency, expression (17)
c EPS jet exhaust speed, constant in the "old" spacecraft model; defined by (20) or (36) or (56) in the improved modet; abbreviation for cosine function
$c_{a c c} \quad$ Acceleration conversion factor, expression (35)
$c_{r} \quad$ Retro stage jet exhaust speed
$c_{\text {vel }}$ Speed conversion factor, expression (36)
$c_{1} \quad$ Auxiliary quantity given by expression (74) of [1]

Coefficients in quadratic expression for Δv_{i}, expression (78) of c_{3}

DIU Digital Interface Unit
d A coefficient in the efficiency law; an auxiliary quantity in the coast-phase solution; solar flux density

E Eccentric anomaly (a scalar)
e A coefficient in the efficiency law; the base of the natural logarithms; eccentricity; subscript denoting Earth
$\bar{\epsilon}_{h} \quad$ Spacecraft unit angular momentum vector
$\overrightarrow{\mathrm{e}}_{\mathrm{r}} \quad$ Spacecraft unit radius vector
$\bar{e}_{t} \quad$ EPS unit thrust vector
\bar{e}
Spacecraft unit velocity vector
$\mathrm{e}_{\mathrm{x}} \quad$ Retro stage characteristic speed exponential factor given by expression (76) of [1]
$\vec{e}_{\lambda} \quad$ Unit primer vector

F Auxiliary scalar function defined by (215) of [1]
$F_{t} \quad$ See αF_{t}
$F_{v} \quad$ Auxiliary quantity defined by (30)
f EPS instantaneous thrust magnitude; f-function of the f and g series; subscript denoting a desired value; true anomaly; auxiliary variable defined by equation (147) of [1]
$\mathrm{f}_{\mathrm{r}} \quad$ Retro stage thrust magnitude
$\mathrm{f}_{\mathrm{t}} \quad$ Total thrust, expression (18)
$\mathrm{f}_{\mathrm{x}} \quad$ Auxiliary quantity given by expression (77) of [1]

G Auxiliary quantity defined by (28)
$G_{i} \quad$ Auxiliary scalar functions in the coast-phase solution, equation (45) of [1]

EPS reference thrust acceleration (old spacecraft model); g-function of the f and g series; BVP point-constraint geometric mean of the weighting factors; parameter local to expression (47)
g' Parameter local to expression (47)
$g_{r} \quad$ Reference gravity acceleration constant, used in (19)
$\mathrm{g}_{\mathrm{x}} \quad$ Auyiliary quantity given by expression (97) of [7]

H Spacecraft angular momentum vector
h Magnitude of spacecraft angular momentum vector
$\bar{h} \quad$ Spacecraft unit angular momentum vector
$h_{I} \quad$ Component of h_{y} containing thrust acceleration, expression (41)
$h_{v} \quad$ Variational hamiltonian, given by (54)

Cartesian components of spacecraft angular momentum vector
$h_{\sigma} \quad$ Thrust-switching step-function (old spacecraft model only)
$I_{B} \quad$ Beam current per thruster
$I_{B P} \quad$ Phantom beam current (per thruster), equal to the beam current a thruster would have if there were no limitations on I_{B}, given by (26)
$I_{B X} \quad$ Restricted phantom beam current, expression (55)
$I_{\text {max }} \quad$ Maximum beam current (per thruster)

Imin Minimum beam current (per thruster)
$I_{S P} \quad$ EPS specific impulse, expression (19)
$I_{S P} \quad$ Reference value of $I_{S P}$, defined in discussion following expression (23)

Subscript pertaining to an intermediate target; inclination to ecliptic; general subscript or running index; inclination of parking orbit about Earth
$\overline{\mathbf{i}} \quad$ Unit vector along x-axis
$\mathbf{i}_{\max } \quad$ Parking orbit inclination associated with range safety limit

J Index-set of the BUP dependent variables
$\bar{j} \quad$ Unit vector along y-axis
$\mathrm{j}_{\mathrm{a}} \quad$ Jettison indjcator for solar arrays (or other power source) prior to retro maneuver, used in (5)
$j_{p} \quad$ Unspecified-reference-power indjcator (old spacecrafit model only)
$j_{j s} \quad$ EPS propulsion system jettison indicator (retro maneuver) in old spacecraft mode 1
$j_{r} \quad$ Retro stage existence indicator
$j_{t} \quad$ EPS tankage jettison indicator (retro maneuver)
$j_{\text {th }} \quad$ EPS thrust subsystem jettison indicator (retro maneuver), used in (5)
$k \quad$ Fundamental constant associated with Mercury propellent, used in (18) and (19); in [1], arbitrary positive constant associated with performance index (replaced by λ_{π} in this document); temporary variable ultimately equated to inverse of the characteristic degradation time

\bar{k}	Unit vector along z-axis
k_{c}	Auxiliary quantity given by expression (75) of [1]
$k_{\text {drop }}$	Intermediate-target drop-mass factor defined by expression (6) of [1]
$k_{r t}$	Retro stage tankage mass factor defined by expression (11) of [1]
k_{s}	EPS structure mass factor defined by expression (8) of [1]
$k_{\text {samp }}$	Intermediate-target sample-mass factor defined by expression (6) of [1]
k_{t}	EPS tankage mass factor defined by expression (7) of [1]
L	Launch site latitude (scalar)
M	Mean anomaly (scalar)
$\left.\begin{array}{l}M_{0} \\ M_{1} \\ M_{2} \\ M_{3} \\ M_{4} \\ M_{5}\end{array}\right\}$	Coefficients used in computing nuclear and total magnitudes of a celestial body (scalars)
M_{N}	Nuclear magnitude (scalar)
M_{T}	Total magnitude (scalar)
m	Spacecraft total mass variable
m	Auxiliary unit vector given by expression (53) ORIGINAL PAGE TA

\dot{m}
Mass flow rate, expression (21)
$m_{a} \quad$ Solar array (or other power source) mass, expression (2)
$m_{b} \quad$ Constant mass component of m_{a}, expression (2)
$m_{\text {drop }} \quad$ Intemediate-target drop-mass given by expression (6) of [7]
$\dot{m}_{\ell} \quad$ Thruster neutral propellant loss, used in (13) and (14)
$\dot{m}_{n} \quad$ Neutralizer propellant flow rate, used in (13) and (14)
$m_{\text {net }} \quad$ Net spacecraft mass
m_{0}
Initial spacecraft mass (payload of launch vehicle) given by expression (2) of [1]
$m_{p} \quad E P S$ propellant mass
$m_{p s} \quad$ Electric propulsion system mass given by expression (4) of [1]
$m_{r} \quad$ Retro stage mass, expression (4)
mpp Retro stage propellant mass given by expression (5), or (9) of [1]
mrst Retro stage structure and tankage mass given by expression (11) of [1]
$m_{s} \quad E P S$ structure mass
$m_{\text {samp }}$ Intermediate-target sample-mass given by expression (6) of [1]
$m_{t} \quad$ EPS tankage mass

$\mathrm{m}_{\text {th }}$	EPS thruster subsystem mass, expression (3)
Δm_{p}	Propellant mass increment due to pripary-target spiral maneuver
n	Exponent in step-size]aw, expression (39) of [1]; subscript denoting time at the primary target; number of BVP dependent variables
\bar{n}	Unit vector normal to the solar arrays
$n_{\max }$	Maximum number of operating thrusters
$n_{\min }$	Minimum number of operating thrusters (>0)
\bar{n}_{p}	Unit vector directed along a planet's north pole
n_{t}	Number of operating thrusters (variable)
Δn_{t}	Increment in n_{t}, when staging thrusters
0	Subscript denoting launch time; subscript denoting the beginning of a computation step
P	A celestial body's position vector; BVP partial derivative matrix
PDS	Power Distribution System
PPU	Power Processing Unit
p	EPS instantaneous power in old spacecraft model; subscript denoting a perturbed, or neighboring, parameter; auxiliary variable in equations (79) of [1]
$\Delta \mathrm{p}$	Ratio of housekeeping to reference power, $\mathrm{p}_{\mathrm{h}} / \mathrm{p}_{\text {ref }}$, old model only
p_{a}	Total instantaneous power developed by arrays (or other power source), expression (6)

$\mathrm{pa}_{\text {max }}$	Maximurn power output of power source that can be utilized by the thruster subsystem and other spacecraft modules, expression (25)
$p_{a 0}$	Reference power of solar arrays or other power source, used in (2) and (6)
p_{b}	Beam power, expressions (10) and (23)
$P_{\text {conv }}$	Housekeeping power in improved spacecraft model, expression (9)
p_{d}	Power output of power distribution system, expression (7)
Pdiu	Jigital interface unit power requirement, used in (9)
$P_{\text {h }}$	Housekeeping power in old spacecraft model
$P_{\ell v}$	Power processor low voltage power requirement, used in (9)
$\mathrm{P}_{\text {max }}$	Maximum power input to an individual thruster, expression (25a)
$\mathrm{p}_{\text {mm }}$	Mission module power requirement, used in (9)
Pref	EPS reference power (old model oniy)
p_{t}	Power input each PPU, expressions (8) and (27)
$p_{\text {ts }}$	Thrust subsystem power requirement, used in (9)
$P_{\text {to }}$	Reference power of each thruster, expressions (3) and (24)

$\left.\begin{array}{l}p_{1} \\ p_{2}\end{array}\right\}$

Auxiliary quantities in coast-phase solution, expressions (54) and
(55) of [7]
q Auxiliary variable in equations (79) of [7]; solar array radiation damage factor

R Spacecraft position vector
$r \quad$ Magnitude of R
$r_{a} \quad$ Primary-target capture-orbit apocenter distance
$r_{c} \quad$ Earth-to-spacecraft communication distance
$\bar{r}_{\mathrm{n}} \quad$ Unit vector aiong line of ascending node
$r_{p} \quad$ Primary-target capture-orbit pericenter distance; primarytarget swingby passage-distance
$\bar{r}_{p} \quad$ Swingby passage-distance unit vector
$r_{\text {peak }} \quad V a l u e$ of r for which γ-curve is at a maximum
s Abbreviation for sine function; auxiliary variable used in equations (79) of [1]; degradation time
$\bar{s} \quad$ Unit vector directed toward Canopus
$t \quad$ Time
$t_{b} \quad$ Retro maneuver burn time given by expression (12) of [1]
$t_{\text {ratio }}$ Minimum throttling ratio, expression (25b)
$\Delta t \quad$ Time-increment due to primary-target spiral maneuver
$u \quad$ Generalized universal anomaly during thrust phases

Au Generalized universal anomaly increment, equivalent to the computation step-size during numerical integration
$V_{G} \quad$ Neutralizer to beam coupling potential, used in (15) and (76)
Beam voltage ($I^{\text {th }}$ value selected from set of up to five constant values)
$V_{I_{\text {max }}}$
Largest beam voltage
$V_{I_{\min }}$
ΔV_{I}
$V_{\infty} \quad H y p e r b o l i c$ excess velocity (or encounter velocity)
$V_{\infty A} \quad$ Swingby planet arrival hyperbolic excess velocity
$V_{\infty D} \quad$ Swingby planet departure hyperbolic excess velocity
$v \quad$ Magnitude of spacecraft velocity
$v_{c} \quad$ Characteristic speed of a rocket maneuver
$v_{e} \quad$ Escape speed from launch parking orbit
v_{g}
$v_{0} \quad$ Speed of a spacecraft in a circular orbit

Planetocentric speed at primary-target swingby closest-approach point; auxiliary speed given by equation (72) of [1]
$v_{\infty} \quad$ Hyperbolic excess speed (or encounter speed)
$\Delta v \quad$ Retro stage imbulsive velocity increment magnitude; characteristic velocity associated with primary-target spiral maneuver; incremental speed required at powered swingby
$\Delta V^{\prime} \quad$ Retro stage total velocity increment magnitude
$\Delta V_{0} \quad$ Minimum incremental velocity (magnitude) for coplanar boost out of circular orbit
$\Delta V_{g} \quad$ Velocity penalty due to noncoplanar boost out of circular orbit
$\Delta v_{\mathbf{j}} \quad$ Velocity penalty due to Taunch azimuth
w Auxiliary variable in equations (79) of [1]
$x \quad$ First Cartesian component of position; a general variable; a general state variable; auxiliary variable in equations (79) of [1]
y Second Cartesian component of position; auxiliary variable in equations (79) of [1]

Third Cartesian component of position
$\alpha \quad$ EPS specific mass; geocentric right ascension of launch excess velocity
$\alpha F_{t} \quad$ Thrust reduction factor due to double ions and beam divergence, given by (12)
$\left.\begin{array}{l}\alpha_{A} \\ \alpha_{D}\end{array}\right\}$
Auxiliary parameters defined by equations (211) and (212) of [1]
$\alpha_{a} \quad$ Specific mass of the solar arrays, used in (2)
$\alpha_{c} \quad$ Communication angle (Sun-Earth-spacecraft)
$\alpha_{t} \quad$ Specific mass of the power conditioning and thruster subsystem, used in (3)

Arbitrary, independent angles defining orientation of excess velocity in (132) and (139) of [1]
β
Independent variable of coast-phase solution, also generalized to be the independent variable on the entire trajectory

Bo Value of β at the beginning of a computation step
$\Delta \beta \quad$ Computation step size (increment of trajectory independent variable)
γ
$\gamma^{\prime} \quad \partial \gamma / \partial r$
$a y / \partial d$, where d is the solar flux density

б Launch hyperbolic-excess-velocity asymptote declination; BVP dependent-variable tolerance

Bend angles of hyperbolic arrival and departure trajectories, expression (213) of [1]
$\delta_{\mathrm{T}} \quad$ Total bend angle given by expression (214) of [1]

Kronecker delta function

ϵ	Auxiliary quantity in the coast-phase solution; obliquity of the Earth's equator to the ecliptic
ε_{I}	Discharge losses, used in (15) and (16)
η	EPS efficiency (old model)
η^{\prime}	$\mathrm{di} / \mathrm{dc}$
${ }^{n}$ conv	$D C-D C$ converter efficiency, used in (9)
${ }^{n_{D}}$	Discharge supply efficiency, used in (16)
${ }^{n} \mathrm{pd}$	Efficiency of the power distribution system, used in (7)
${ }^{7} \mathrm{PPU}$	Power processor efficiency, given by (16)
$\eta_{\text {PTH }}$	Efficiency given by expression (15)
${ }^{n}$ s	Screen supply efficiency, given by (17)
${ }^{\text {T }}$ TH	Thruster efficiency, given by (1])
n_{u}	Prope? iant utilization efficiency, given by (13) and (14)
η_{u}^{\prime}	$\partial \eta_{u} / \partial I_{B}$, given by (46) and (47)
θ	In-plane thrust angle
θ_{i}	Travel angle increment
θ_{t}	Travel angle
A	Primer vector (adjoint to spacecraft velocity)

A Primer vector (adjoint to spacecraft velocity)

Magnitude of Λ; a general adjoint variable; the iterator inhibitor
${ }^{\prime} c \quad$ Adjoint variable associated with jet exhaust speed
$\lambda_{g} \quad$ Adjoint variable associated with reference thrust acceleration
$\mu \quad$ Gravitational constant of the sun; a general gravitational constant

Gravitational constant of the primary target
Mass ratio

Mass ratio increment at an intermediate target

Performance index; ratio of circle circumference to diameter

Partial derivative of π with respect to arbitrary variable x

Auxiliary variable used in equations (79) of []]
$\sigma \quad$ Thrust switch function, given by (42)
σ^{*} Special form of thrust switch function, given by equation (186) of [1]
$\sigma_{r} \quad$ Portion of total thrust switch function, given by (193) of [1]

Propulsion-corner-proximity tolerance-interval
τ EPS propulsion time
${ }^{\tau}$ d Characteristic degradation time
$\Phi \quad$ Transformation matrix for rotating from ecliptic to equatorial coordinate system

Thrust cone angle (between thrust and radius)

Angle between normal to solar arrays and the spacecraft-sunline

Out-of-plane thrust angle

Longitude of ascending node of an orbit

Angular position from the ascending node of an orbit to the spacecraft; argument of perifocus of an orbit

1.0 INTRODUCTION

This document is the first supplement to the currentiy existing primary HILTOP program document (published in December 1974; see reference [1]) and describes the modifications and improvements made to the HILTOP electric propulsion trajectory optimization computer program up through February 1978.

A new, more realistic propulsion system model involving the actual ion beam current and voltage has been implemented in the program. The power processor efficiency, ion thruster efficiency, and thruster specific impulse are modeled as variable functions of the (solar array, nuclear, or other) power available to the propulsion system. The number of operating thrusters are staged, and the beam voltage is selected from a set of five (or less) constant voltages, based upon the application of variational calculus. The minimum and maximum number of operating thrusters, the minimum throttling ratio, and the maximum input power to an individual thruster are specified as input data. The constant beam voltages may be optimized individually or collectively.

The new propulsion system logic is activated by a single program input key (NAMELIST input "NEW"); program modifications have been designed to retain the "old" HILTOP program within the framework of the new logic, so that old input data files (with no modifications required) will run the new program version and produce identical results as before.

The capability of simulating solar array degradation with the new spacecraft model is not included in this program version; also not included is the capability of simulating the new spacecraft model under the Launch Vehicle Independent (LVI) mode. The simulation of array degradation and the LVI mode remain available with the old spacecraft modet.

The execution step requirements of the new program version are a little less than 390 K bytes of Main Core Storage. This compares to 350 K for the old version.

The report contains the new analysis describing these features, a complete description of program input quantities, and sample cases of computer output illustrating the new program capabilities.

2.0 FORPMLATION

2.1 Spacecraft and Trajectory Models

The following discussion is oriented toward the programming logic aspects of the new HILTOP computer program version. Equations and analysis which have not been affected by the implementation of the new spacecraft model are not repeated here and may be found in reference [1]. The new spacecraft model was obtained from the Lewis Research Center [2] .

2.1.1 Spacecraft Mass Components

In the new spacecraft model, the spacecraft is composed of an electric propulsion system and associated tankage and propellant masses, a structure mass component, a retro propulsion component (for maneuvers about a primary target), a set of instrument package masses to be dropped at intermediate targets and a net spacecraft mass as follows:

$$
\begin{equation*}
m_{o}=m_{a}+m_{t h}+m_{p}+m_{t}+m_{s}+m_{r}+\sum_{i=1}^{n-1} m_{d r o p}+m_{n e t} \tag{I}
\end{equation*}
$$

where m_{0} is the initial spacecraft mass; $m_{a}, m_{t h}, m_{p}, m_{t}$ are the solar array (or other power source), thruster subsystem, propellant and tankage masses, respectively; m_{s} is the structure component; m_{r} is the retro propulsion mass; $m_{\text {drop }} i$ is the instrument package mass left at the i th target; and met. is net spacecraft mass (payload). In the analysis to follow, the subscript o denotes the launch body and n the primary (final) target. The net spacecraft mass consists of the scientific instruments, communications, navigation, and other engineering hardware, shielding, and any other mass components required to carry out the mission of interest. Equation (1) is identical to that of Reference [1] (the old spacecraft model) except that the quantity m_{ps} of the old model has been replaced by $m_{a} \pm m_{t h}$.

The solar array and thruster subsystem masses are given by,

$$
\begin{align*}
& m_{a}=\alpha_{a} p_{a o}+m_{b} \tag{2}\\
& m_{t h}=\alpha_{t} n_{\max } p_{t o} \tag{3}
\end{align*}
$$

where $p_{a 0}$ is the reference power of the solar array or other power source (see Electric Propulsion System), α_{a} is the specific mass of the arrays, $n_{\max }$ is the maximum number of operating thrusters, $p_{\text {to }}$ is the reference power of each thruster, α_{t} is the specific mass of the thruster and power conditioning subsystem, and m_{b} is a constant mass.

The propellant, tankage, and structure masses m_{p}, m_{t}, and m_{s}, respectively, are computed the same as in the oid model. The retro propulsion mass m_{r} is composed of the two components (as before),

$$
\begin{equation*}
m_{r}=m_{r p}+m_{r s t} \tag{4}
\end{equation*}
$$

in which the retro structure and tankage mass component is computed identically as before and the retro propellant requirment, $m_{r p}$, is now given by

$$
\begin{equation*}
m_{r p}=j_{r}\left(m_{o} v_{n}-j_{a} m_{a}-j_{t h} m_{t h}-j_{t} m_{t}\right) e_{x} \tag{5}
\end{equation*}
$$

$j_{a}, j_{\text {th }}$ and j_{t} are input jettison indicators set equal to one if the solar array, thruster subsystem and tankage mass components are to be jettisoned prior to the retro maneuver and equal to zero otherwise, and j_{r} is an indicator (1 or 0) for the presence or absence respectively, of the retro stage; and e_{X} is the retro burn exponential factor discussed in reference [1]. j_{a} is a new indicator, and $j_{\text {th }}$ replaces $j_{p s}$ of the old model.

2.1.2 Electric Propulsion System

The electric propulsion system is comprised of the solar array and the
thruster subsystem*. The solar array is characterized by a reference power, P_{ao}, defined as the power developed at 1 AU from the sun assuming the arrays are oriented normal to the sun. The instantaneous power developed by the arrays P_{a}, takes into account the effects of temperature, the distance from the sun and the orientation of the arrays with respect to the sun line. The instantaneous power developed is expressed

$$
\begin{equation*}
\mathrm{P}_{\mathrm{a}}=\gamma \mathrm{p}_{\mathrm{ao}} \tag{6}
\end{equation*}
$$

where γ is a power function which accounts for temperature, distance and orientation effects and is computed identically as in reference [1], having the same options.

The thruster subsystem consists of a power distribution system which accepts the power delivered by the array and distributes it to a number of power processing units (PPU's) each of which is dedicated to a separate thruster. Each PPU processes the power input to the unit to deliver to the associated thruster the appropriate voltage and current parameters for efficient operation. The power output of the power distribution system, p_{d}, is modelled

$$
\begin{equation*}
p_{d}=n_{p d} p_{a} \tag{7}
\end{equation*}
$$

where $n_{p d}$ is the efficiency of the power distribution system, a specified constant. This power is distributed evenly among the current number n_{t} of the operating PPU/thruster modules. That is, the power input to each PPU is

$$
\begin{equation*}
p_{t}=\frac{p_{d}-p_{\text {conv }}}{n_{t}} \tag{8}
\end{equation*}
$$

$\mathrm{P}_{\text {conv }}$ is the power requirement input to the system $D C-D C$ converter to provide power to the digital interface units, the power processor low voltage section, the thrust system, and the mission module. $\mathrm{P}_{\text {conv }}$, which is loosely denoted "housekeeping power" is given by

[^0]\[

$$
\begin{equation*}
p_{\text {conv }}=\frac{\left(p_{d i u}+p_{\ell v}\right) n_{t}+p_{m m}+p_{t s}}{n_{\text {conv }}} \tag{9}
\end{equation*}
$$

\]

in which five program-input constants are

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{diu}}=\text { digital interface unit power requirement, } \\
& \mathrm{P}_{\mathrm{lv}}=\text { power processor low voltage input power requirement, } \\
& \mathrm{P}_{\mathrm{mm}}=\text { mission module power requirement, } \\
& \mathrm{p}_{\mathrm{ts}}=\text { thrust subsystem power requirement, } \\
& \eta_{\mathrm{conv}}=\mathrm{DC}-\mathrm{DC} \text { converter efficiency. }
\end{aligned}
$$

The numerator of equation (9) represents the power output of the DC-DC converter. The power output of each PPU/thruster module is the beam power p_{i} which is related to the input power as follows

$$
\begin{equation*}
p_{b}=n_{T H} n_{P P U} p_{t} \tag{10}
\end{equation*}
$$

where $n_{T H}$ and $n_{\text {PPU }}$ are the efficiencies of the thruster and power processing units, respectively. These efficiencies are dependent upon the operating conditions, expressed in terms of the beam current I_{B} and the beam voltuge V_{I}, of the thruster. The beam voltage is selected at each instuint in time from one of up to five input discrete values; the selection is made by the program as part of the problem solution as discussed in the section, Optinality Conditions. The beam current is throttled as necessary to make use of the input power P_{t}, but is subject to the constraint of a maximum operating value, $I_{\max }$, which is specified by input. The thruster efficiency is modelled empirically

$$
\begin{equation*}
n_{T H}=\left(\alpha F_{t}\right)^{2} n_{u} n_{P T H} \tag{11}
\end{equation*}
$$

where αF_{t} is a thrust reduction factor due to double ions and beam divergence

$$
\begin{equation*}
\alpha F_{t}=C_{7}+C_{2} I_{B} \tag{12}
\end{equation*}
$$

where C_{1} and C_{2} are input constants; η_{u} is the propellant utilization efficiency which is a function of the beam current

$$
\begin{align*}
& \eta_{u}=\frac{I_{B}}{\dot{m}_{\ell}+\dot{m}_{n}+I_{B}\left[1-C_{3}\left(\frac{I_{B}+\left(I_{B}-1\right)^{2}}{C_{4}+\left(I_{B}-1\right)^{2}}\right)\right]} \text { for } I_{B} \geqslant 1 \mathrm{amp} \tag{13}\\
& n_{u}=\frac{I_{B}}{\dot{m}_{\ell}+\dot{m}_{n}+I_{B}\left(1-C_{3} I_{B} / C_{4}\right)} \text { for } I_{B}<1 \text { amp } \tag{14}
\end{align*}
$$

where \dot{m}_{Q} is the thruster neutral propellant loss in equivalent amps, \dot{m}_{n} is the neutralizer propellant flow rate in equivalent amps, and $\dot{m}_{\ell}, \dot{m}_{n}, C_{3}$ and C_{4} are input constants; and $\eta_{P T H}$ is a function of the beam voltage

$$
\begin{equation*}
\eta_{\mathrm{PTH}}=\frac{V_{I}}{\left(1+C_{5}\right)\left(V_{I}+V_{G}-\Delta V_{I}\right)+\varepsilon_{I}+\Delta V_{I}} \tag{15}
\end{equation*}
$$

where ε_{I} is the discharge losses in $\mathrm{eV} / \mathrm{ion}, \Delta \mathrm{V}_{1}$ is the discharge voltage in volts, V_{G} is the neutralizer to beam coupling potential in volts, and C_{5} is the ratio of accelerator current to beam current. $\varepsilon_{I}, \Delta V_{I}, V_{G}$ and C_{5} are input constants. The power processor efficiency is of the form

$$
\begin{equation*}
n_{\text {PPU }}=\frac{\left(7+C_{5}\right)\left(V_{I}+V_{G}-\Delta V_{I}\right)+\varepsilon_{I}+\Delta V_{I}}{\left(1+C_{5}\right)\left(V_{I}+V_{G}-\Delta V_{I}\right) / n_{S}+\left(\varepsilon_{I}+\Delta V_{I}\right) / n_{D}} \tag{16}
\end{equation*}
$$

where η_{D} is the discharge supply efficiency, an input constant, and n_{S} is the screen supply efficiency which is assumad to be a linear function of beam current; i.e.,

$$
\begin{equation*}
n_{s}=C_{6}+C_{7} I_{B} \tag{17}
\end{equation*}
$$

For trajectory computation purposes, it is convenient to express the thruster subsystem performance in terms of the actual thrust output $f t$ by the n_{t} operating thrusters

$$
\begin{equation*}
f_{t}=k n_{t}\left(\alpha F_{t}\right) I_{B} \sqrt{V_{I}} \quad \text { (newtons) } \tag{18}
\end{equation*}
$$

(Where $k=2.0391 \times 10^{-3}$) and the specific impuise $I_{S P}$

$$
\begin{equation*}
I_{S P}=\frac{2\left(\alpha F_{t}\right) n_{u} \sqrt{V_{I}}}{\mathrm{~kg}_{r}} \quad(\mathrm{sec}) \tag{19}
\end{equation*}
$$

where $g_{r}=9.80665 \mathrm{~m} / \mathrm{sec}^{2}$. Other performance parameters of traditional importance include the jet exhaust speed c , the mass flow rate \dot{m}, the thrust acceleration a, and the beam power p_{b}. These parameters are evaluated as follows:

$$
\begin{align*}
& c=g_{r} I_{S P} \tag{20}\\
& \dot{m}=-f_{t} / c \tag{27}\\
& a=f_{t} / m \tag{22}\\
& p_{b}=\frac{1 / 2 f}{} t^{c} \tag{2i}
\end{align*}
$$

where m is the instantaneous mass.
ORIGLNAL PAGE IS
OF POOR QUALITY

For identification and documentation purposes, it is useful to identify reference values of the thruster specific impulse and power. These reference values correspond to the maximum permissible value of beain current, $I_{\max }$, an input parameter, and the largest of the discrete values of beam voltage, $V_{\text {Imax }}$. The reference value of specific impulse, denoted $I_{\text {SPo }}$, is evaluated with Equation (19) using $I_{\max }$ and $V_{\text {Imax }}$ in the Equations (11) (17) and (19). The unit thruster reference power $p_{\text {to }}$ is defined to be the power allocable to each thruster that is input to the power distribution system assuming each thruster is operating at a beam current of $I_{\max }$ and a beam voltage of $V_{\text {Imax }}$. That is,

$$
\begin{align*}
p_{\text {to }} & =\frac{\left(1+C_{5}\right)\left(V_{I \max }+V_{G}-\Delta V_{I}\right)+\varepsilon_{I}+\Delta V_{I}}{\left.n_{p d}{ }^{n_{P P U}}\right|_{I_{\max }}, V_{I \max }} I_{\max } \\
& =\frac{n_{D}\left(1+C_{5}\right)\left(V_{I \max }+V_{G}-\Delta V_{I}\right)+\left(C_{6}+C_{7} I_{\max }\right)\left(\varepsilon_{I}+\Delta V_{I}{ }^{\prime}\right.}{n_{p d}{ }^{n_{D}}\left(C_{6}+C_{7} I_{\max }\right)} I_{\max } \tag{24}
\end{align*}
$$

Thus, if $n_{\max }$ denotes the maximum number of operating thruster; permitted, then the maximum power output of the arrays that can be utilized by the thruster subsystem and other spacecraft modules is

$$
\begin{equation*}
\mathrm{p}_{\mathrm{a}_{\max }}=\mathrm{n}_{\max } \mathrm{p}_{\mathrm{to}}+\frac{\mathrm{p}_{\operatorname{conv}(\max)}}{n_{\mathrm{pd}}} \tag{25}
\end{equation*}
$$

in which $P_{\text {conv (max })}$ is $P_{\text {conv }}$ evaiuated with $n_{t}=n_{\max }$.
The maximum power input to an individual thruster is computed,

$$
\begin{equation*}
P_{\max }=10^{-3} \times I_{\max }\left[\left(1+C_{5}\right)\left(V_{I_{\max }}+V_{G}-\Delta V_{I}\right)+\left(\varepsilon_{I}+\Delta V_{I}\right)\right] \tag{25a}
\end{equation*}
$$

(in kw) when $I_{\max }$ is specified as a program input, and this formula is inverted to compute $I_{\max }$ when $p_{\max }$ is specified as a program input. The minimum throtting ratio is defined in terms of the beam current,

$$
\begin{equation*}
t_{\text {ratio }}=I_{\min } / I_{\max } \tag{25in}
\end{equation*}
$$

when $I_{\text {min }}$ is specified as a program input, and this formula is inverted to compute $I_{\min }$ when $t_{\text {ratio }}$ is specified as a program input.

Notice that the solar array tilt angle does not appear in this formulation; it is essentially replaced by I_{B}. When $I_{B}=I_{\max }$, which corresponds to "operating below the power curve", then this model is not concerned with how any potentially-available excess power is avoided. Methods of avoidance include
(I) tilting the (solar) arrays
(2) shielding the arrays
(3) dumping excess power via radiators
(4) shunting the excess power for other use

The solar arras tilt angle would become a factor in the model if array degradation were considered; however, incJuding array degradation in the model would introduce considerable complexity to the equations and algorithms required for the optimal solution and is deemed beyond the scope of the current implementation.

When the spacecraft is "operating on the power curve" as specified by γ (i.e., using all avajlable input solar power), the beam current for each operating thruster is given by

$$
\begin{equation*}
I_{B}=\frac{-b+\sqrt{b^{2}+4 C_{6} C_{7} G_{t}}}{2 C_{7} G} \tag{26}
\end{equation*}
$$

in which p_{t}, using equations (6), (7) and (8), is given by

$$
\begin{equation*}
p_{t}=\frac{n_{p d} p_{a o}^{\gamma}}{n_{t}}-\frac{p_{c o n v}}{n_{t}} \tag{27}
\end{equation*}
$$

and

$$
\begin{align*}
& G=\left(\varepsilon_{I}+\Delta V_{I}\right) / n_{D} \tag{28}\\
& b=F_{V}-C_{7} p_{t}+C_{6} G \tag{29}\\
& F_{V}=\left(T+C_{5}\right)\left(V_{I}+V_{G}-\Delta V_{I}\right) \tag{30}
\end{align*}
$$

In this spacecraft model, the solar array (or other power source) may not be perfectly matched to the thrust subsystem capability under reference conditions; instead, the power, P_{ao}, may be a specified constant, which may be less than, equal to, or greater than the thrust subsystem maximum power requirement $\mathrm{P}_{\mathrm{a}_{\max }}$. In the case of solar electric propulsion, the analyst pre-selects the desired power curve γ via program inputs a_{i} (power curve coefficients) and $\gamma_{\text {max }}$. In fact, the same power curve options are available as in the simpler spacecraft model, and these options are discussed on pp. 11-13 of [1]. Then, at any given point in time, the value of γ will allow the computation of a hypothetical value for the beam current using equation (26), and if this value lies in the acceptable range $I_{\min } \leqslant I_{B} \leqslant I_{\text {max }}$, it is used in the actual calculations; if the value is greater than $I_{\max }$, then $I_{\text {max }}$ is used, and if less than $I_{\text {min }}$ (which is associated with the minimum throtting ratio), then special action is required involving an iteration to isolate the point along the trajectory at which $I_{B}=I_{\text {min }}$, at which point the control state of the thruster subsystem is optimally switched (as discussed in the section, Optimality Conditions). When either $I_{B}=I_{\text {max }}$ or the spacecraft is
operating on a level portion of the power curve $\gamma=\gamma_{\max }$, this model is not concerned with how any potentially-available excess power is avaided (as mentioned above). In most applications, the spacecraft will be operating on the non-constant portion of the power curve, representing the optimal situation in which the arrays are normal to the sun line and gathering as much power as possible. If the program user wishes to have the solar array output power matched to the remainder of the spacecraft (under the reference conditions of having the solar arrays at 1 AU from the sun and oriented normal to the sun line), a program input key is provided which causes the setting $p_{a 0}=p_{a_{\max }}$ internaliy.

2.1.3 Differential Equations

The differential equations of motion applicable with the new spacecraft model are (Consult Nomenclature for definitions of previouslydefined symbols):

$$
\begin{gather*}
\ddot{R}=a \bar{e}_{t}-\frac{\mu}{r^{3}} R \tag{31}\\
\dot{v}=-\frac{a v}{c}, \tag{32}\\
\dot{V}_{I}=0, I=1,2,3, \ldots(\max 5), \tag{33}\\
\dot{\phi}=0, \tag{34}
\end{gather*}
$$

in which the thrust acceleration is given by

$$
\begin{equation*}
a=\frac{k\left(C_{T}+C_{2} I_{B}\right) \sqrt{V_{I}} n_{t} I_{B}}{c_{a c c} m_{o} v} \tag{35}
\end{equation*}
$$

and the jet exhaust speed is given by

$$
\begin{equation*}
c=\frac{2\left(C_{1}+C_{E} I_{B}\right) \eta_{u} \sqrt{v_{I}}}{c_{v e l} k} \tag{36}
\end{equation*}
$$

where $c_{a c c}=5.9301282604 \times 10^{-3} \mathrm{~m} / \mathrm{sec}^{2}$ and $c_{v e 1}=29784.916673 \mathrm{~m} / \mathrm{sec}$ render the quantities a and c expressed in program internal units. It is therefore emphasized that the symbols a and c from this point of the discussion onward pertain to thrust acceleration and jet exhaust speed expressed in (normalized) program internal units, in contrast to the a and c of equations (22) and (20), respectively, which are expressed in MKS units. Relations (35) and (36) are valid regardless of the algorithm by which the beam current I_{B} is generated. The controls are n_{t}, V_{I}, \bar{e}_{t}, and I_{B}, where n_{t} is the number of operating thrusters, V_{I} is the beam voltage, \bar{E}_{t} is a unit vector defining the direction of thrust, and I_{B} is the beam current per thruster.

The analysis pertaining to the thrust cone angle ϕ (the angle between the radius and thrust vectors) remains essentially unchanged compared to that of the old HILTOP model, and is included here for the sake of completeness. The propulsion time x of the old model is not included in the new model since a spacecraft having thrusters which are staged according to available power does not have a "propulsion time" which can be simply implemented in a variational calculus approach.

The differential equations which govern the behavior of the adjoint variables are given by

$$
\begin{gather*}
\ddot{\Lambda}=-\frac{\mu}{r^{3}} \Lambda+\frac{3 \mu}{r^{5}}(\Lambda \cdot R) R+\frac{\partial h_{I}}{\partial R}+\lambda_{x}\left(\bar{e}_{t}-\frac{R}{r} \cos \phi\right) \tag{37}\\
\dot{\lambda}_{v}=\frac{a}{v}\left(\Lambda \cdot E_{t}\right), \tag{38}
\end{gather*}
$$

$$
\begin{gather*}
\dot{\lambda}_{V_{I}}=-a\left\{\frac{\left(\Lambda \cdot \bar{e}_{t}\right)}{2 V_{I}}+\left[\left(\Lambda \cdot \bar{e}_{t}\right)\left(\frac{C_{2}}{C_{1}+C_{2} I_{B}}\right)+\left(\left(\Lambda \cdot \bar{e}_{t}\right)-\sigma\right) \frac{n_{u}^{\prime}}{n_{u}}+\sigma\right] \frac{\partial I_{B}}{\partial V_{I}}\right\}, \\
I=1,2,3, \ldots(\max 5), \tag{39}
\end{gather*}
$$

$$
\begin{equation*}
\dot{\lambda}_{\phi}=\lambda_{x} \tilde{R} \cdot\left(\overline{m x}_{t}\right) \tag{40}
\end{equation*}
$$

The term h_{I} in equation (37) is the component of the variational hamiltonian containing the thrust acceleration:

$$
\begin{equation*}
h_{I}=a \sigma, \tag{41}
\end{equation*}
$$

where the coefficient o of the thrust acceleration is called the thrust switch function and is given by

$$
\begin{equation*}
\sigma=\Lambda \cdot \bar{e}_{\mathrm{t}}-\frac{v \lambda \nu}{\mathrm{c}} \tag{42}
\end{equation*}
$$

The partial derivative $h_{I} / \partial R$ is a somewhat lengthy expression, determined as follows; it is first mitten as the product of partial derivatives

$$
\begin{equation*}
\frac{\partial h_{I}}{\partial R}=\frac{\partial h_{I}}{\partial I_{B}} \frac{\partial I_{B}}{\partial R} \tag{43}
\end{equation*}
$$

When $I_{B} \equiv 0$ (during coast), $\dot{\lambda}_{v} \equiv 0$ and also $\partial h_{I} / \partial R \equiv 0$ because $\partial I_{B} / \partial R \equiv 0$.
Therefore $I_{B}>0$ in what follows. The following partial derivatives are
determined in a straightforward manner and the results are given:

$$
\begin{equation*}
\frac{\partial h_{I}}{\partial I_{B}}=h_{I}\left[\frac{I}{\sigma} \frac{\partial \sigma}{\partial I_{B}}+\frac{C_{2}}{C_{1}+C_{2} I_{B}}+\frac{1}{I_{B}}\right] \tag{44}
\end{equation*}
$$

in which the "singularity" $\frac{1}{\sigma}$ is removed by using $h_{\mathrm{I}} / \sigma=a$. Then

$$
\begin{equation*}
\frac{\partial \sigma}{\partial I_{B}}=\left(\Lambda \cdot \bar{e}_{t}-\sigma\right)\left[\frac{c_{2}}{C_{1}+C_{2} I_{B}}+\frac{\eta_{u}^{\prime}}{\eta_{u}}\right] \tag{45}
\end{equation*}
$$

and

$$
\begin{equation*}
\eta_{u}^{\prime}=\frac{\partial \eta_{u}}{3 I_{B}}=\frac{\eta_{u}}{I_{B}}\left[1-\eta_{u}\left(1-2 C_{3} I_{B} / C_{4}\right)\right] \quad \text { when } I_{B} \leqslant 7 \tag{46}
\end{equation*}
$$

and

$$
\begin{equation*}
\eta_{u}^{1}=\frac{\partial \eta_{u}}{\partial I_{B}}=\frac{\eta_{u}}{I_{B}}\left[1-\eta_{u}\left\{1-C_{3}\left(\frac{I_{B}+g}{C_{4}^{+g}}\right)\left[1+I_{B}\left(\frac{1+g^{\prime}}{I_{B}^{+g}}-\frac{g^{\prime}}{C_{4}^{+g}}\right)\right]\right\}\right] \tag{47}
\end{equation*}
$$

when $I_{B}>1 ; g=\left(I_{B}-1\right)^{2}$ and $g^{\prime}=\frac{\partial g}{\partial I_{B}}=2\left(I_{B}-1\right)$.
The partial derivative $\partial h_{I} / \partial I_{B}$ is then determined. It remains to determine $\partial I_{B} / \partial R$. When $I_{B} \equiv 0$ or $I_{B} \equiv I_{\max }, \partial I_{B} / \partial R \equiv 0$. It therefore remains to determine $\partial I_{B} / a R$ when the spacecraft is operating on the power-constraint curve (using all available input solar power). For this case, I_{B} is computed from equation (26), and, after some manipulation,

$$
\begin{equation*}
\frac{\partial J_{B}}{\partial R}=\frac{1}{2 G} \frac{\partial p_{t}}{\partial R}\left[1+\frac{2 C_{6} G-b}{2 C_{7} G I_{B}+b}\right] \tag{48}
\end{equation*}
$$

in which

$$
\begin{equation*}
\frac{\partial p_{t}}{\partial \mathrm{R}}=\frac{\eta_{\mathrm{pd}} \mathrm{p}_{\mathrm{ao}}}{n_{\mathrm{t}}} \frac{\partial \gamma}{\partial \mathrm{R}} \tag{49}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial \gamma}{\partial R}=-\frac{2}{r^{3}} \bar{e}_{r} \frac{\partial \gamma}{\partial d} \tag{50}
\end{equation*}
$$

In equation (50), \bar{e}_{r} is the radius unit vector from the sun to the spacecraft and $\partial \gamma / \partial d$ is generated the same as in the old model.

In equation (39), $a I_{B} / \partial V_{I}$ is given by

$$
\begin{equation*}
\frac{\partial I_{B}}{\partial V_{I}}=-\left(7+C_{5}\right)\left[\frac{I_{B}}{2 C_{7} \mathrm{GI}_{B}{ }^{\dagger b}}\right] \tag{51}
\end{equation*}
$$

When the spacecraft is operating "on the power curve", and $\partial \mathrm{I}_{\mathrm{B}} / \partial V_{\mathrm{I}} \equiv 0$ when $I_{B} \equiv I_{\max }$ or $I_{B} \equiv 0$.

The expression for λ_{x} in equation (37) is identical to that of the old model when written in terms of the thrust acceleration,

$$
\begin{equation*}
\lambda_{x}=-a \frac{\Lambda \cdot\left(\bar{m} \times \bar{e}_{t}\right)}{R \cdot\left(\bar{m} \times \bar{e}_{t}\right)} \tag{52}
\end{equation*}
$$

if the thrust cone angle is held constant and λ_{x} is identically zero if the cone angle is unconstrained. The unit vector m is defined the same as in the old model,

$$
\begin{equation*}
\bar{m}=\frac{R \times \Lambda}{|R \times \Lambda|} . \tag{53}
\end{equation*}
$$

From equation (39), it is seen that five (or less) additional differential equations (for $\dot{\lambda}_{V_{I}}$) are integrated along each trajectory, but only when at least one beam voltage transversality condition requires satisfaction, as requested by user program input. Actually, each $\dot{\lambda}_{V_{I}}$ can be non-zero only when the corresponding beam voltage V_{I} is being used to drive the spacecraft, and is identically-zero otherwise; therefore, at any given time along a trajectory, oniy one $\dot{\lambda}_{V_{I}}$ need be integrated. (Transversality is discussed in a later section.)

2.1.4 Optimaility Conditions

The control variables available for optimization along the trajectory consist of the number of operating thrusters n_{t}, the beam voltage V_{I} (selectable from a set of from one to five constant values), the unit vector \vec{e}_{t} defining the direction of thrust, and the beam current per thruster I_{B}. The control variable h_{σ} of the old model is replaced by I_{B}, such that $I_{B} \equiv 0$ defines a coast phase. As will be explained below, $I_{B} \equiv 0$ is used to conceptually define when the spacecraft is coasting rather than $n_{t} \equiv 0$ or $V_{I} \cong 0$, since the optimal values of $n_{t} \geqslant 0$ and $V_{I} \neq 0$ must be maintained even during coast. (Of course, the voltage can be turned off on board the spacecraft during coast.)

The application of the Maximum Principle of optimal control theory leads to the result that the proper choice of the control variables is that which maximizes the variational hamiltonian, h_{v}, at each point
along the path. The variational hamiltonian for the problem forumlated here may be written

$$
\begin{equation*}
h_{v}=a \sigma-\frac{\mu}{r^{3}}\langle\Lambda \cdot R\rangle-\dot{\Lambda} \cdot \dot{R} \tag{54}
\end{equation*}
$$

where a is the thrust acceleration given by equation (35) and o is the thrust switch function given by (42); a gets its name "thrust switch function" because its sign determines, as usual, if the spacecraft is thrusting or coasting. Specifically, the variational hamiltonian is maximized with respect to the beam current I_{B} by setting I_{B} to its lowest permissible value (zero) when $\sigma<0$ and its largest permissible value when $o>0$, for given values of n_{t} and V_{I}. The method of selecting and maintaining the optimal values of n_{t} and V_{I} is discussed below. For now, assume that the optimal values of n_{t} and V_{I} are known. Then, when $\sigma>0$, I_{B} is chosen as large as possible. This is accomplished by first computing the beam current according to (26), and using this value for I_{B} unless it is greater than $I_{\max }$, in which case $I_{B} \equiv I_{\max }$ is chosen. When $\sigma<0, I_{B} \equiv 0$ is the optimal choice. In this manner, the optimal choice of I_{B} is determined. There is also a value of the beam current, $I_{\text {min }}$, determined by the minimum throtiting ratio, which does not enter into the discussion here for choosing the optimal beam current, but which plays a fundamental role in the algorithm for choosing optimal values for n_{t} and V_{I}. This will enter into the discussion below.

The variational hamiltonian h_{v} is maximized with respect to \bar{e}_{t} identically the same whether employing the old or new spacecraft model; the optimal choice for \bar{e}_{t} is discussed on p. 16 of [1].

It remajns to determine the choices for n_{t} and V_{I} which maximize h_{v} at each point along the path. In general, n_{t} and V_{I} might be considered to generate a 2-dimensional control sub-space in which is found a finite, bounded, discrete rectangular set of permissible points:

Then, at the initial point in time, the variational hamiltonian is computed for each point of the entire grid (for each pair of values $\left(V_{I}, n_{t}\right)$), and such that I_{B} is chosen as a function of V_{I} and n_{t} according to the method discussed above*. Cases for which $I_{B}<I_{\text {min }}$ are discarded from the competition. When the grid mapping is complete, the optimal values of n_{t} and V_{I} are known, by simply saving the values associated with the largest h_{v} as the grid mapping progresses. It is assumed in the present implementation that all cases are not discarded from the competition for maximum h_{V} due to $I_{B}<I_{\text {min }}$, i.e., there is sufficient power available to thrust at the start of the mission for a sensibly designed spacecraft. The optimal values of n_{t} and V_{I} thus determined might be represented by the circled point in the grid above. If the thrust switch function o associated with these optimal values is positive, the spacecraft thrusts (using the maximum value of I_{B} allowed); otherwise, $\sigma<0$ and the spacecraft coasts.

[^1]A critical distinction regarding the beam current I_{B} is made at* this point. The notion of a "phantom" beam current $I_{B P}$ is introduced and is defined as the value of beam current (per thruster) which the spacecraft would have if there were no physical restrictions ($I_{\min }, I_{\max }$) on the beam current. $I_{B P}$ is therefore computed using expression (26). Also introduced is the restricted phantom beam current, $I_{B X}$, which is equal to $I_{B P}$ unless $I_{B P}>I_{\max }$, in which case $I_{B X}=I_{\text {max }}$. Therefore, both $I_{B P}$ and $I_{B X}$ may be less than $I_{\min }$, but onTy $I_{B P}$ may be greater than $I_{\max }$. The actual beam current, which is used to drive the spacecraft when $\sigma>0$, cannot violate the (throtting ratio) bounds $I_{\min } \leqslant I_{B} \leqslant I_{\max }$ except for $I_{B}=0$. Both $I_{B P}$ and $I_{B X}$ are always greater than zero.

It is the restricted phantom bean current $I_{B X}$ which is always employed in the computation of the jet exhaust speed, c, in equation (36), even when $I_{B}=0$. The jet exhaust speed (or equivalently, specific impulse) is therefore always a positive quantity, even when the spacecraft is not thrusting. The specific impulse is therefore conceived as a latent physical property which characterizes a thrust subsystem's potential capability, even when the spacecraft is not operating. In turn, t'a jet exhaust speed c, always computed using $I_{B X}$, is used in equation (42) for the thrust switch function σ. Then the sign of σ is used, in turn, to decide whether the spacecraft is thrusting or coasting, in which σ is computed using the optimal values of V_{i} and n_{t}. Therefore, using functional notation,

$$
\begin{equation*}
I_{B X}=\min \left\{I_{B P}\left(v_{I}, n_{t}\right), I_{\max }\right\} \tag{55}
\end{equation*}
$$

Then, in terms of V_{I} and n_{t}, the jet exhaust. speed is given by (again using functional notation)

$$
\begin{equation*}
c=\left(\frac{2}{c_{v e 1}^{k}}\right)\left(c_{1}+c_{2} I_{B X}\left(V_{I}, n_{t}\right)\right) n_{u}\left(I_{B X}\left(V_{I}, n_{t}\right)\right) \sqrt{V_{I}} \tag{56}
\end{equation*}
$$

Once optimal values for V_{I} and n_{t} are initialized, it remains to determine how to maintain optimal values along the path. A brute force approach would be to keep testing the entire grid of permissible points in the (V_{I}, n_{t}) control subspace along the path, and switch to a new value of $\left(V_{I}, n_{t}\right)$ when the new controls produced a larger variational hamiltonian; the point of switchover would be isolated by iteration. However, for control grids having 30 or 40 points, this approach would be computationally very costly. An assumption is therefore made which is denoted "the neighboring solution assumption," for the purpose of building a computationally efficient optimal control algorithm. In this assumption, the only grid points in the control subspace which are considered as candidates for optimal control are those "directly" neighboring the presently existing optimal control point; the neighboring points are effectively defined by the connecting lines (to the circled optimal point) in the grid depicted above. In a two-dimensional control grid there are therefore (a maximum of) eight alternate control strategies to consider, and, obviously, fewer when the optimal control point is on a grid border or corner.

The tactic employed in the computer program for maintaining optimal values of V_{I} and n_{t} therefore consists of the above scheme of comparing candidate hamiltonian yalues, in which each point (in time) of optimal switchover of the controls V_{I} and n_{t} (i.e., the point where the difference between hamiltonian values associated with the optimal grid point and candidate grid point vanishes) is strongly isolated by iteration.

A few other considerations must be taken into account in the algorithm for maintaining optimal values of V_{I} and n_{t}. Roots of the two functions $I_{B P}-I_{\max }$ and $I_{B P}-I_{\min }$ must be strongly isolated (by iteration), corresponding respectively to the maximum throttling ratio (unity) and minimum throttling ratio thresholds. It is useful to introduce at this point the notion of an "inaginary spacecraft" associated with each point in the $\left(V_{I}, n_{t}\right)$ control subspace neighboring the optimal point, such that the imaginary spacecraft has the corresponding neighboring values of beam voltage V_{I} and number of operating thrusters n_{t}. Then minimum throttling
ratio thresholds must also be isolated for the imaginary spacecrafts assoriated with (some of the) points neighboring the optimal point in the $\left(V_{I}, n_{t}\right)$ control subspace, because switches in this subspace are not allowed which would result in $I_{B}<I_{\text {min }}$. Switches in the $\left(V_{I}, n_{t}\right)$ control subspace will occur regardless of the sign of the thrust switch function σ.

When the minimum throttling ratio threshold is attained and $I_{B P}$ is negative, a switch must occur in the $\left(V_{I}, n_{t}\right)$ subspace or else the spacecraft must commence coasting unless it was already coasting ($\sigma<0$). Or, if the throttling ratio of any comparative imaginary spacecraft attains the minimum threshold and $\dot{I}_{B P}$ for that imaginary spacecraft is positive, then a switch in the (V_{I}, n_{t}) control subspace may occur to the point associated with that imaginary spacecraft. It may also be that, for solar electric propuision, the spacecraft will recede so far from the sun that all points of the $\left(V_{I}, n_{t}\right)$ control subspace grid will "be" below the minimum throttling ratio threshold, so that the spacecraft will have no alternative but to coast; and it may also be that the spacecraft will commence thrusting again as it approaches the sun and some pair of values (V_{I}, n_{t}) have an associated acceptable throtiling ratio with $\sigma>0$. Whenever one of the above situations (described in this paragraph) occurs, the primer derivative must be jumped so that the variational hamiltonian remains constant. The jump condition is

$$
\begin{equation*}
\dot{h}^{+}=\dot{\Lambda}^{-}+\left(\frac{h_{I}^{+}-h_{I}^{-}}{R \cdot \dot{R}}\right) R \tag{57}
\end{equation*}
$$

in which $h_{I}=$ as is that portion of the variational hamiltonian associated with the engine parameters.

It is possible that the neighboring solution assumption (discussed above) will in fact be violated at some point in time along a particular trajectory, for a particular spacecraft configuration and a particular mission. This situation will occur extremely infrequentiy. However, when it does happen, the optimal controls (V_{I}, n_{t}) must be re-determined. It is
a simple matter to detect when the neighboring solution assumption has been violated; whenever a switch occurs in the $\left(V_{I}, n_{t}\right)$ control subspace to a point neighboring the prior point, the values of all variational hamiltonians associated with the points neighboring the new optimal (?) point are compared to the hamiltonian value associated with the new point. If the new point has the largest hamiltonian, it is (considered to be) the optimal point (V_{I}, n_{t}), and the neighboring solution assumption is not violated; otherwise, the assumption is violated, and one of the new neighboring points in the (V_{I}, n_{t}) control subspace is more optimal (the one having the largest hamiltonian), and an additional switch is immediately made to the new point, with a jump in \dot{A} according to (57) to maintain hamiltonian constancy. Once the switch to the new point has occurred, the entire test of neighboring points for the optimality of the present values of $\left(V_{I}, n_{t}\right)$ is conducted once again. The test of the neighboring (optimal) solution assumption is indeed carried out every time a switch occurs in the (V_{I}, n_{i}) control subspace, and the testing of neighboring points is repeated (as described above) until the optimal values of $\left(V_{T}, n_{t}\right)$ are obtained.

Whenever the neighboring solution assumption is violated (which, again, happens extremely infrequently), a double-switch or multiple-switch occurs in the $\left(V_{I}, n_{t}\right)$ control subspace, with a concurrent jump in \dot{A}; this represents a slightly sub-optimal control strategy, compared to the (computationally inefficient) globally optimum strategy of directly testing for the optimality of all points in the ($V_{\mathrm{I}}, \mathrm{n}_{\mathrm{t}}$) subspace. The globaily optimum strategy would therefore switch directly to the (not-necessarily-neighboring) new optimal point at a time along the trajectory very slightly iess than that found by the neighboring solution strategy, and with no jump in \dot{A} required. Nevertheless, the mechanization adopted for the general solution to the optimal rocket flight problem, as posed in this report, employs the neighboring solution assumption (or restriction) because:

- It is computationally efficient
- It is extremely rarely violated
- All violations are felt to have negligible impact on spacecraft masses and other performance parameters (compared to the globally optimum solution)

2.2 Boundary and Transversality Conditions

The basic boundary conditions and transversality conditions are described in [1]. This section discusses only those conditions which must be modified to accomodate the more sophisticated spacecraft modet, and also some entirely new transversality conditions. Therefore, any boundary or transversality conditions appearing in [1] but not mentioned here remain unchanged.

The discussion in this section pertains solely to the new spacecraft model, and therefore certain quantities which are indigenous to the old model will be found entirely absent in the new analysis. Specifically, these quantities are the (constant) jet exhaust speed c of the old mode], the reference thrust acceleration g, and the propulsion time τ. Therefore, all equations in [1] pertaining to these quantities are absent in the analysis describing the new spacecraft model, and any boundary or transversality conditions associated with these quantities are not applicable with the new model.

The general equation for the transversality conditions is written

$$
\begin{equation*}
\lambda_{\pi} d \pi+\sum_{i=1}^{n}\left[\Lambda \cdot d \dot{R}-\dot{\Lambda} \cdot d R+\lambda_{v} d v+\lambda_{\phi} d \phi+\sum_{I=1}^{n_{V \max }} \lambda_{V} d V I-n_{V} d t\right]_{t_{i-1}}^{t_{i}}=0 \tag{58}
\end{equation*}
$$

in which ne performance index π is equal to the negative of the net spacecraft mass, $\pi=-m_{n e t}$, and λ_{π} is the arbitrary positive constant which renders the general transversality condition linear and homogeneous in the adjoint variables (λ_{π} replaces the symbol k in [1]). The convenient choice is made whereby each λV_{T} is forced to be continuous at each intermedjate target, which means that only $\lambda_{V_{I}}\left(t_{n}\right)$ need appear in the derived transversality expressions rather than the cumbersome expression

$$
\begin{equation*}
\lambda_{V_{I}}\left(t_{n}\right)-\sum_{i=1}^{n-1}\left(\lambda_{V_{I}}^{+}\left(t_{i}\right)-\lambda_{V_{I}}\left(t_{i}\right)\right)-\lambda_{V_{I}}\left(t_{0}\right), I=1,2,3, \ldots(\max 5) \tag{59}
\end{equation*}
$$

This is because $\lambda_{V_{I}}\left(t_{n}\right)$ alone, with $\lambda_{V_{I}}\left(t_{0}\right)=0$ and $\lambda_{V_{I}}^{+}\left(t_{i}\right)=\lambda_{V_{I}}\left(t_{i}\right)$ for each i, has the same value as the cumbersome expression cited above if $\lambda_{V_{I}}\left(t_{0}\right)$ were not zero and $\lambda V_{I}\left(t_{i}\right)$ were not continuous, and this is due to the absence of λ_{V} in the differential equations.

The expression for π may be written

$$
\begin{align*}
\pi & =j_{r} m_{r s}+m_{0}\left\{k_{s}+k_{t}-\left(1+k_{t}\right) v_{n}+j_{r}\left(1+k_{r t}\right) e_{x}\left[\left(1+j_{t} k_{t}\right) v_{n}-j_{t} k_{t}(1+\right.\right. \\
& \left.\left.\sum_{i=1}^{n-1}\left(k_{\text {samp }} i^{-k_{d r o p ~}}\right)\right) j+\left(1+k_{t}\right) \sum_{i=1}^{n-1} k_{s a m p}{ }^{-1} k_{t} \sum_{i=1}^{n-1} k_{d r o p}\right\} \\
& +\left(\alpha_{a} p_{a o}+m_{b}\right)\left[1-j_{a} j_{r}\left(1+k_{r t}\right) e_{x}\right]+\left(\alpha_{t} n_{\max } p_{t o}\right)\left[1-j_{t n} j_{r}\left(1+k_{r t}\right) e_{x}\right], \tag{60}
\end{align*}
$$

where symbol definitions may be found in Nomenclature. π may be written functionally in its most general form,

$$
\begin{equation*}
\pi=\pi\left(v_{\infty 0}, v_{\infty, n}, v_{n}, v_{I_{\max }}, \delta, i\right) \tag{67}
\end{equation*}
$$

Using the notation $\pi_{x}=2 \pi / \partial x$, the general variation of π may be written

$$
\begin{equation*}
d \pi=\pi v_{v_{0}} d v_{\infty 0}+\pi v_{v_{n}} d v_{\infty n}+\pi v_{n} d v_{n}+\pi_{V_{\max }} d V_{I_{\max }}+\pi_{\delta} d \delta+\pi_{i} d i \tag{62}
\end{equation*}
$$

ORIGINAL PAGE IS
OF POOR QUALITY'

Then, the following consists of a summary of those transversality conditions published in [1] which are altered when employing the new spacecraft model.

Equation (98) of [1] for $\pi_{m_{0}}$ remains the same except the two terms containing j_{p} are eliminated. Equation (100) of [1] for $\pi_{v_{\infty n}}$ remains unchanged except the term $-j_{p s} m_{p s}$ is replaced by $-j_{a} m_{a}-j_{t h} m_{t h}$. Further more, there is a transcription error in that equation, such that the symbot v_{c} should be replaced by v_{p}.

As before, the arbitrary positive quantity λ_{π} is assigned a value which causes the transversality condition associated with the final mass ratio to be satisfied:

$$
\begin{equation*}
\lambda_{\pi}=-\lambda_{v_{n}} / \pi v_{n} \tag{63}
\end{equation*}
$$

This is defined as the negative of the symbol k in equation (144) of [1]; this sign is merely a matier of convention, so that the quantity ($-k$) is simply replaced by λ_{-}in the transversality equations appearing in [1]. (The form of λ_{π} expressed by (63) above is coded in the program.)

For open launch excess speed with m_{0} being independent of δ and i, the transversality condition is

$$
\begin{equation*}
\frac{\lambda_{\pi}^{\pi} v_{\infty 0}}{\lambda_{0}}-1=0 \tag{64}
\end{equation*}
$$

For cases in which m_{0} is a function of δ and/or i, the transversality conditions are written as follows: for open excess speed,

$$
\begin{equation*}
\lambda_{\pi} \pi_{m_{0}} \frac{\partial m_{0}}{\partial V_{\infty 0}}\left(\frac{v_{\infty 0}}{\Lambda_{0} \cdot V_{\infty 0}}\right)-1=0 \tag{65}
\end{equation*}
$$

For open geocentric declination of $V_{\infty 0}$,

$$
\begin{equation*}
\lambda_{\pi} \pi_{m_{0}} \frac{\partial m_{0}}{\partial \delta}-A_{0} \cdot\left[\left(v_{\infty 0} \times \bar{m}_{p}\right) \times v_{\infty_{0}} / v_{\infty 0} \cos \delta\right]=0 \tag{66}
\end{equation*}
$$

In addition, the factor, f is dropped from equation (151) of [1]. No changes were required in the software for the conditions discussed in this paragraph, since they are coded in the form given here.

New transversality conditions arise due to the presence of the beam voltages V_{I} in the general transversality condition (58). For voltages V_{I} less than the maximum $V_{\text {Imax }}$, the transversality conditions (whose satisfaction generate optimal values of V_{I}) are, simply,

$$
\begin{equation*}
\lambda_{V_{I}}\left(t_{n}\right)=0, \quad I=1,2,3, \ldots \tag{67}
\end{equation*}
$$

The constant beam voltages may be optimized individually or collectively, as specified by user program input. They may also be driven to specifjc values by the iterator.

A cautionary note is issued at this point to the program user wishing to optimize any or all of the beam voltages. Specifically, the quantities $\lambda V_{\text {I }}$ remain quite small (relative to unity) over any trajectory, so that their final values (equation (67)) are inherently small. This is due to the fact that $\lambda_{V_{I O}}=0, I=1,2,3, \ldots$, and the derivatives $\dot{\lambda}_{V_{I}}$ are of the order of V_{I}^{-1} in magnituve. Furthermore, the independent variables V_{I} are relatively large compared to other independent variables such as A_{0} and $\dot{\Lambda}_{0}$, which are of the order unity. Consequently, when attempting to optimize the beam voltages, the user must set the corresponding iterator independent variable weights to (e.g.g) $X_{i}(5)=10^{-4}$ and dependent variable tolerances to (s.g., $Y i(3)=70^{-8}$. However, since only limited experience has been gained in optimizing the beam voltages to date, the choice of best values for these weights and tolerances is not well understood.

Since $V_{\text {Imax }}$ appears in the expression for the performance index π (through $p_{\text {to }}$), its transversality condition is given by

$$
\begin{equation*}
\lambda \pi^{\pi} V_{I_{\max }}+\lambda V_{I_{\max }}\left(t_{n}\right)=0 \tag{68}
\end{equation*}
$$

When the power source is not matched to the thrust subsystem,

$$
\begin{equation*}
\pi_{V_{I_{\max }}}=\alpha_{t} n_{\max }\left(1-j_{t h} \cdot{ }^{j}\left(1+k_{r t}\right) e_{x}\right) \frac{\partial p_{t o}}{\partial V_{I_{\max }}} \tag{69}
\end{equation*}
$$

When the power source is matched to the thrust subsystem (i.e., $p_{a_{0}}=p_{a_{\max }}$, where $\mathrm{P}_{\mathrm{a}_{\max }}$ is given by (25)),

$$
\begin{equation*}
{ }^{\pi} V_{I_{\max }}=n_{\max }\left\{\left(\alpha_{a}+\alpha_{t}\right)-j_{r}\left(1+k_{r t}\right) e_{x}\left(j_{a} \alpha_{a}+j_{t h}{ }^{\alpha} t\right)\right\} \frac{\partial p_{t 0}}{\partial V_{I_{\max }}} \tag{70}
\end{equation*}
$$

in (69) and (70),

$$
\begin{equation*}
\frac{\partial p_{\text {to }}}{\partial V_{I_{\max }}}=\frac{\left(1+C_{5}\right) I_{\max }}{{ }_{T_{p d}}\left(C_{6}+C_{7} I_{\max }\right)}+\left[\frac{p_{\text {to }}}{I_{\max }}-\frac{C_{7}\left(1+C_{5}\right)\left(V_{I_{\max }}+V_{G}-\Delta V_{I}\right) I_{\max }}{\eta_{p d}\left(C_{6}+C_{7} I_{\max }\right)^{2}}\right] \frac{\partial I_{\max }}{\partial V_{I_{\max }}} \tag{71}
\end{equation*}
$$

When $I_{\text {max }}$ is specified as constant,

$$
\begin{equation*}
\frac{\partial I_{\max }}{\partial V_{I_{\max }}} \equiv 0 \tag{72}
\end{equation*}
$$

and when the maximum power input to an individual thruster is specified via (25a),

$$
\begin{equation*}
\frac{\partial I_{\max }}{\partial V_{\max }}=-\frac{\left(T+C_{5}\right) I_{\max }^{2}}{10^{3} \mathrm{P}_{\max }} \tag{73}
\end{equation*}
$$

2.3 Auxiliary Computations

This section presents equations employed in computations which are made after the iteration sequence involving the primary target is completed.

2.3.1 Additional Block Print Variables.

A standard print block is employed for printing information at various points along a trajectory. Each standard block contains a total of forty parameters, which are described in [1].

The standard block may now be augmented in a third way, in addjtion to the two wavs (power degraciation and target-relative coordinates) described in [1]. When the improved spacecraft model is invoked by program input NEW, two additional lines automatically appear as the sixth and seventh lines of the print block. The information contained in these lines is as follows:

NO. THR Number of operating thrusters, n_{t}.

VOLTAGE
Beam voltage, V_{I}, in volts.

CURRENT

PHAN CUR

SP IMP
Beam current per thruster, I_{B}, in amps.

Beam current per thruster $I_{B P}$ which would be realized if there were no limits imposed on the beam current; in amps. ("Phantom current", given by expression (26)).

Specific impulse, $I_{s p}$, given by expression (19), in seconds.

THRUST	Total thrust, f_{t}, as given by expression (18), but expressed in pounds.
BEAM PONER	Beam power per thruster, as given by expression (23) except divided by the number of operating thrusters n_{t}, in kilowatts.
DUMP POHER	Dumped power, in kilowatts; zero when $I_{B} \leqslant I_{\text {max }}$, otherwise computed from $V_{I}\left(I_{B P}-I_{\max }\right)$, where $I_{B P}$ is the phantom current defined above.
UTIL EF	Propellant utilization efficiency, η_{u}, as given by expression (13) or (14).
THR RED	Thrust reduction factor, αF_{t}, as given by expression (12).
THR EF	Thruster efficiency, $\eta_{T H}$, as given by expression (11).
PPU EF	Power processor efficiency, $n_{\text {PPU }}$, as given by expression (16).
PTH EF	Efficiency ${ }^{\text {I PTH }}$ given by expression (15).
SS EF	Screen supply efficiency, η_{s}, given by expression (17).
ARRAY PO'IER	Total power output by the solar arrays (ur other power source), p_{a}, as given by expression (6), in kilowatts.
PPU POWER	Power input to each PPU module, p_{t}, as given by expression (8), in kilowatts.

Whenever one of the triggers associated with the iterator independent variables X36 through $X 40$ (the beam voltages) is turned on, the corresponding adjoint variables λV_{I} are integrated and printed as an additional line of the print block following the output quantities described above.

2.3.2 Additional Extremum Point Summary Print

When the improved spacecraft model is invoked by program input NEW, a second table of values is printed beneath the currently existing "Extremum Points of Selected Functions."

The usual extremum table contains a cross-reference column at the far right, which contains summary information relating to the second table if the entry (line) was caused by a parameter in the second table; otherwise the cross reference field is blank. The cross reference information consists of IMAX to denote points at which I_{B} attains the $I_{\max }$ threshold, IMIN to denote points at which i_{B} attains the $I_{\text {min }}$ threshoid, $\pm V$ to denote beam voltage switch points, and $\pm N$ to denote points of thruster staging.

The second table contains the time (repeated from the first table); the number of operating thrusters; the beam voltage (volts); the beam current per thruster I_{B} and phantom current $I_{B P}$ (defined in the preceding section), both in amps; the propellant utilization efficiency η_{u}; the specific impulse $I_{S P}$ in seconds; the beam power per thruster p_{b} in kilowatts; the dumped power in kilowatts, as defined in the section immediately preceding, and the total thrust f_{t} in pounds.

If the engine state (number of thrusters and/or beam voltage) has switched, the corresponding table entry will be flagged with a plus sign or a minus sign, and the entire line will be repeated with values corresponding to after the switch has taken place. The plus and minus signs will also appear during coast phases, when the number of thrusters and beam voltage are printed as zero. Also, critical values of beam current are flagged with an asterisk(*).

3.0 PROGRAM INPUT

The following consists of a complete description of program inputs. With respect to the basic HILTOP report [1], many new input quantities necessary to characterize the more realistic propulsion system have been added. All new input names are flagged with a single asterisk (*), and inputs whose definitions have been modified are flagged with a double asterisk (**) .

The new nropulsion system logic is activated by a single program input key (NAMELIST input "NEW"); prcgram modifications have been designed to retain the "old" HILTOP program within the framework of the new logic, so that old input data files (with no modifications required) will run the new program version and produce identical results as before.

3.1 Namelist

Inputs to HILTOP are given through the NAMELIST feature of the Fortran programming language. The input NAMELIST is named MINPUT, and every input required or used in the program is declared by name in the list. The general form for assigning an input value to a quantity is, simply,

NAME=VALUE

where NAME is the name assigned to the variable and is included in the NAMELIST, and VALUE is a numerical or logical quantity consistent in form (i.e., logical, integer, or real) with NAME. Unless otherwise specified, all MINPUT names commencing with one of the letters I through N represent integers, whereas all nanes commencing with one of the letters A through H or 0 through Z are doubie precision floating point numbers. Each NAMELIST case must begin with the characters

F
\&MINPUT
commencing in card column 2 and followed by at least one blank, and end with the characters
preceded by at least one blank. Card column 1 is ignored on all NAMELIST input cards. Multiple data assignments on a single card are permissible if separated by conmas. Blanks in the variable field, VALUE, are taken as zeroes. A comma following the last VALUE on a card is optional on the IBM system. The order of the input data assignments is arbitrary; i.e., they need not be in the same order as listed in the NAMELIST. In fact, there is no requirement that any specific input parameter be represented in the input data set. If no value is included in the inputs for a particular parameter, the default value is used (see Default Values). For other details regarding the NAMELIST feature, the reader is referred to, for example, the IBM System 360/Fortran IV Language manual. NAMELIST cases may be stacked back-to-back indefinitely. A single NAMELIST input error may cause the remaining NAMELIST inputs to be ignored.

3.2 Definitions of Input Parameters

Specific examples of the program inputs are given in the Sample Problems and Results section. Default-values of inputs are given in the next section.

The program inputs, in alphabetical order, are:
$A A I \quad D e s i r e d$ final extra-ecliptic inclination, i. Related to $A E$, AR, and IOUT. [deg]

AE Desired final extra-ecliptic eccentricity, e. Related to AAI, AR, and IOUT.
**ALPHAA Specific mass of solar arrays, α_{a}. (See expression (2) of this report or expression (4) of [1].) [kg/kw]
**ALPHAT. Specific mass of power distribution, processing, and thruster subsystem, α_{i}. (See expression (3) of this report or expression (4) of [1].) [kg/kw]

ALTITU This input variable is associated with program logic which has not been kept up-to-date, specifically, logic pertaining to optimum departure of a NERVA-type rocket from earth orbit. This variable should be ignored.

AN

AR

ASOL
*BMASS

Array of five elements; the first three of which may be currently used. Inclinations to ecliptic of intermediate-target orbits. Input CNIX(i) only when MOPTX(i) $=11$. Related to ECIX, OMIX, SAIK, SOIX, TPIX, EMUODX, and RADODX. [deg]
*CSEP

CSTR
GTANK
CTRET
*CURMAX
*CURMIN
*CVOLT
Trajectory-integration exponent n in expression (39) of [1]. Desired final extra-ecliptic perihelion distance, r_{f}. Related to AAI, AE, and IOUT. [AU]

Array of five elements consisting of the solar power law coefficients a_{i} in expression (18) of [1]. ASOL(1) $\ddagger 0$ tells the program to use the input coefficients rather than the internal coefficients. The coefficients are normalized internally, and the program executes the iterations to produce the required remarkable points of the power curve (which are printed).

Efficiency coefficient b in expression (16) of [I]. Related to DI and EI.

Constant rass in expression (2), m_{b}. [kg]
Launch vehicle coefficients b_{1}, b_{2}, and b_{3} in expression (2) of [1]. Used only if MBOOST is negative.
[$\mathrm{kg}, \mathrm{m} / \mathrm{sec}, \mathrm{kg}$]
Inclination to ecliptic of primary-target orbit. Input only when MOPT3 $=11$. Related to ECI, OMI, SAI, SOI, TPI, EMUODD, and RADODD. [deg]

Array of seven elements, consisting of the quantities C_{1}, C_{2}, C_{3}, C_{4}, C_{5}, C_{6}, and C_{7}, respectively, found in equations (12) through (17).

Structural factor, k_{s}, in expression (8) of [?].
Propellant tankage factor, k_{t}, in expression (7) of [7].
Retro tankage factor, $k_{r t}$, in expression (17) of [1].
Maximum allowable beam current for an individual thruster, $I_{m a x}$.
Related to POWMA. [amps]
Minimum allowable beam current for an individual thruster, $I_{m i n}$.
Related to TRATIO. [amps]
Neutralizer to beam coupling potential, V_{G}, in expressions (15) and (16) [volts]
*DEFFIC Discharge supply efficiency, η_{D}, in expression (16).
DI Efficiency coefficient d in expression (76) of []]. Related to BI and EI. [$\mathrm{km} / \mathrm{sec}$]
*DLOSS Discharge losses, ε_{I}, in expressions (15) and (16). [eV/ion]
DMRETR Retro engine mass, $m_{r s}$, in expression (17) of [T]. [kg]
**DPOW Ratio of housekeeping power p_{h} to reference power $p_{r e f}$. Used only with the old spacecraft model. The power transmitted to the propulsion system is that generated by the arrays less housekeeping power which is constant along the trajectory. The power output of the arrays normal to the sun at 1 AU is $\mathrm{P}_{\text {ref }}{ }^{+} \mathrm{P}_{\mathrm{h}}$. This option should not be invoked on missions during which large solar distances are encountered where the power developed is less than p_{h}. Erroneous results will be obtained.
*DVOLT Discharge voltage, ΔV_{I}, in expressions (15) and (16). [volts]
ECI Eccentricity of primary-target orbit. Must be less than mity. Input only when MOPT3 = 17. Related to CNI, OMI, SAI, SOI, TPI, EMMLOODD, and RADODD.

ECIX Array of five elements, the first three of which may be currently used. Eccentricities of intermediate-target orbits. Input $\operatorname{ECIX}(\mathrm{i})$ only when MOPTX $(\mathrm{i})=$ 71. Related to CNIX, OMIX, SAIX, SOIX, TPIX, EMUODX, and RADODX.

EI Efficiency coefficient e in expression (76) of [1]. Re7ated to BI and DI.

EMUODD Gravitational constant of primary-target. Input only when MOPT3 = 11, Related to ECI, CNI, OMI, SAT, SOI, TPI, and RADODD. [m $\mathrm{m}^{3} / \mathrm{sec}^{2}$]

EMUODX Array of five elements pertaining to the gravitational constants of intermedjate-targets. These inputs must be ignored at present.
*ETAPD Efficiency of the power distribution systems. $\eta_{\rho d}$, in expression (7).
*ETCONV DC-DC converter efficiency, $\eta_{\text {Conv, }}$, in expression (9).
GAMMAX Maximum permissible value of the power function γ when MODE $=5$. At solar distances less than the value for which $\gamma=$ GAMMAX, the solar arravs are assumed to be tilted or shielded such tinat γ is maintained at the limiting value.

**GAP	Propulsion-corner proximity tolerance-intervat, $\Delta \sigma$. See discussion in the section Avoiding Corners in the Propulsiontime Function in [1]. Whenever the thrust switch function a grazes the zero-axis within the tolerance $\|\Delta \sigma\|$ on any trajectory, an internal counter is incremented, and the trajectory is considered to be in the neighborhood of a propulsion-time corner. Positive value of GAP causes forced-thrusting case to be inserted, negative vajue causes bypass to next case, whenever the internal counter reaches the related input variable NHUNG. Value is set negative when new spacecraft model is invoked.
HOUR	Hour-of-day of reference date (e.g., 17.352D0). Related to MYEAR, MONTH, and MDAY.
IBAL	Ballistic option indicator. Setting IBAL $\neq 0$ invokes option I discussed in the section Ballistic Trajectory Option of [1].
INTPR	Indicator which specifies print-7ength when the iteration in subroutine INTERP, fails. Value of 0 causes shortprint and 1 causes detailed-print.
IOUT	Extra-ecliptic mission indicator. IOUT $=1$ or 2 indicates that extra-ecliptic target conditions are desired, in which the iterator dependent variable triggers $Y 7(2)$ through $Y 6(2)$ are set equal to 1, and for which the input LAUNCH (which see) should probably be set to T, and parameters related to LAUNCH also set appropriately. Ordinarily MOPT2 $=3$. No retro stage may be employed.
	$\Rightarrow \quad i, e, r_{p}$ specified; $f_{n}=0$.
	$=2 \quad i, e, a$ specified; f_{n} optimized.
	In the above, $\mathbf{i}=$ final extra-ecliptic inclination, $e=$ final eccentricjty, $r_{p}=$ final perihelion distance, $a=$ final semimajor axis, and $f_{n}=$ true anomaly at the final time. Final Ω and ω are optimized in both cases. Related to $A E, A R$, and AAI.
IRK	Numerical integration option (currently not used).
IRL	Primer-origin-proximity step-size-contiol indicator. Value of zero causes the bypass of control, leaving the step-size Δu constant. See discussion in the set:ion, Integration (Thrust) of [1].

A non-zero value of IROT causes the input ecliptic projection of the primer vector and its time derivative to be rotated about the z-axis through an angle equal to the difference in longjtudes of the spacecraft between the last trajectory of the previous case (or zero if no previous case) and the first trajectory of the current case. This feature permits one to use the initial adjoint variables from a 2-dimensional trajectory as the initial-guess inputs for a 3-dimensional trajectory using the ephemeris option.

ISPIN Spinner indicator. Not used at present.
ITF Provides normal termination conditions for runs which require more machine time than is estimated. The value specifies the number of machine-time seconds (CPU and I/0) required to execute the summary trajectory after halting the iteration-sequence. [sec] Does not apply if subroutine REMTM is tummied.

ITPRNT Indicator for special print from MINMX3 iterator. Non-zero value invokes print.
*JA Jettison indicator j_{a} for solar arrays (or other power generation system) prior to primary-target retro-maneuver, as used in expression (5).
$=0$ Solar arrays rot jettisoned.
$=1$ Solar arrays jettisoned prior to retro-maneuver.
**JPP Jettison indicator $j_{\text {th }}$ for electric propulsion thrust subsystem prior to primary-target retro-maneuver, as used in expression (5). In the old spacecraft model, jettison indicator $j_{p s}$ for entire electric propulsion system prior to primary-target retromaneuver, as used in expression (9) of [1].
$=0$ Propulsion system not jettisoned.
$=1$ Propulsion system jettisoned prior to retro maneuver.
JPRINT Unit 11 printout-length indicator. A value of zero causes the iterator independent and dependent variables to be output only for each summary-trajectory; a value of one causes the same output additionaliy at each iteration of an iteration sequence.

JT Jettison indicator \mathbf{j}_{t} for electric propulsion tankage prior to primary-target retro-maneuver, as used in expression (5).
$=0$ Tankage not jettisoned.
$=1$ Tankage jettisoned prior to retro-maneuver.


```
    15 TITAN III E/CENTAUR
    16 SHUTTLE/TRANSTAGE
    17 SHUTTLE/DELTA
    18 SHUTTLE/AGENA
    19 SHUTTLE/CENTAUR
    20 SHUTTLE/CENTAUR/BURNER II (2300)
    21 SHUTTLE/IUS
NEG Use input booster coefficients B1, B2, and B3.
```

MDAY Day-of-month of reference date (e.g., 26). Related to MYEAR, MONTH and HOUR.

MONTH Month-of-year of reference date (e.g., 8). Related to MYEAR, MDAY, and HOUR.

MOPT Ballistic option indicator. Using MOPT invokes option 2, discussed in the section, Ballistic Trajectory Option of [1], as follows:
$=0$ No action (use input $\Lambda_{0}, \dot{\Lambda}_{0}$, and $v_{\infty 0}$).
$=1$ Generate ballistic solution with flyby end conditions.
$=2$ Generate ballistic solutuon with orbiter end conditions.
Re7ated to REVS.

Array of five elements, the first three of which may be currently used. This array specifies the target-number, or planetnumber, of the successive intermediate-targets, and a value of zero indicates absence of the intermediate-target. A zeroentry must not precede a non-zero entry. Planet selection is the same as for MOPT2. MOPTX(1) pertains to iterator parameters X41-X50 and Y41-Y50; MOPTY(?) pertains to X51-X50 and Y51-Y60; and MOPTX(3) pertains to $X 67-X 70$ and Y61-Y70. Times at the targets are X48, X58, and X68. Not to be used unless MOPT2 $\neq 0$.

Launch planet number and ephemeris-option indicator.
$=0$ Analytical planetary ephemeris is not used.
$\neq 0$ Analytical planetary ephemeris is used and the specific launch planet is selected as follows:
(Continued on next page)

$=1$	Mercury	$=29$	Flora
2	Venus	30	Achilles
3	Earth	31	Amor
4	Mars	32	Hidalgo
5	Jupiter	33	Alinda
6	Saturn	34	Grigg-Skjellerup (1977)*
7	Uranus	35	Kopff
8	Neptune	36	Grigg-Skjellerup (1982)*
9	Pluto	37	Ganymed
10	Ceres	38	Ivar
11	Input Target**	39	Beira
12	D'Arrest (1982)*	40	Kepler
13	Encke (1980)*	41	Giacobini-Zinner (1985)*
14	Icarus (1978)*	42	Borrelly (1987)*
15	Eros	43	Tempel II (1988)*
16	Geographos (1983)*	44	Tempel II (1983)*
17	Encke (1977)*	45	Tuttle-Giacobini-Kresak
18	Encke (1984)*	46	Schaumasse
19	Encke (1987)*	47	Honda-Mrkos-Pajdusakova
20	Halley	48	Giacobini-Zinner (1979)*
21	Betulia	49	Icarus (1987)*
22	Toro (1983)*	50	Toro (1987)*
23	Pallas	57	Geographos (1987)*
24	Juno	52	Grigg-Skjellerup (1987)*
25	Vesta	53	Pons-Winnecke (1989)*
26	Astraea	54	Reinmuth-1 (1988)*
27	Hebe	55	Encke (1990)*
28	Iris		

MOPT3 Planet number of primary target. Planet selection is the same as for MOPT2. If ephemeris is not used, MOPT3 is used only for retro-stage mass computations.

MOPT4 Array of ten elements, specifying up to ten post-swingby targets. Planet selection is the same as for MOPT2, and a value of zero indicates the absence of a post-swingby target. A negative vaTue in MOPT4(1) selects multiple bailistic swingbys, rather than a set of single swingbys in which case also set MAXHAM $=0$. Negative values (in absolute value) produce planet selection the same as for MOPT2. When MOPTA(1) < 0 , the remaining elements of MOPTA(i) may be positive or negative. See the section, Swingby Continuation Analysis of [1] for details ano Sample Case H of [1] for an example-case. Should be used only for primary-target flyby missions. Related to T2, MSWING, NSWING and XSWING.

[^2]MPOW Flag used in conjunction with the solar array degradation option. Value of zero results in the optimum orientation of the arrays relative to the sum line. A non-zero value forces the arrays to an orientation yielding the maximum power achievable at that instant. Related to TPOWER.

MPRINT Indicator for printing the sumnary-trajectory (final trajectory of a case) as a function of time or for invoking extra printout.
$=0$ Small-size block print at thrust switch points only (SWITCH POINT SUMMARY page).
$=1$ Same as $=0$, except expands to become a standard printblock of parameters for each computed point along the trajectory, inciuding the trajectory extension controlled by the input variable TGO.
$=2$ Same as $=0$, except each block contains extra lines consisting of target-relative coordinates and target magnitudes.
$=3$ Combination of $=1$ and $=2$.
MPUNCH Punched-card and trajectory-tape generation control.
$=0$ No special output.
1 Punch final values of independent parameters.
2 In addition, punch selected mission analysis parameters used for graphic documentation or other purposes.
<0 and >-700 Punch trajectory output used with the ASTEA program. The absolute value of MPUNCH determines the frequency of trajectory points output, e.g., -3 would result in the punching of every third integration point.
s-101 Trajectory tape output used with the ASTEA program. The absolute value less 100 determines the frequeicy of trajectory points output. Related to NTAPE.

MREAD Card input option (iterator independent variables)
$=0$ No special cards input.
$=1$ The independent variables generated by a previous run by the MPUNCH $=1$ or 2 option are input following the NAMELIST case, as discussed in the section, Program Output of [1].

MSWING Array of ten elements, used only when running multiple-target ballistic swingbys, such that MSWING(i) corresponds to MOPT4(i) and selects the type of swingby maneuver desired at the respective swingby target. Used only if MOPT4(1) < 0 . The shooting method
(MINMX3 iterator) is used, and values of $-7,-2$, or -3 correspond to a swingby passage distance injtial guess of $r_{p}=\infty$ (i.e., continuous heliocentric velocity). Each element MSWING(i) may have any of the following values:
= -] Go* directly for unpowered swingby; if and only if it fails, go for powered swingby having flight time T2(i) = initial guess.
$=-2$ Go directly for powered swingby only, having $\mathrm{T}(\mathrm{i})=$ flight time of post-swingby leg.
$=-3$ Go directly for unpowered swingby; then, whether it succeeds or not, go for powered swingby having $\mathrm{T} 2(\mathrm{i})=$ flight time.
$=-4$ Go directly for unpowered swingby, but using initial velocity guess loaded into XSWING(j, i), $j=1,2,3$, similar to $\operatorname{MSWING}(\mathrm{j})=-1$.
$=-5$ Same as $=-2$, except use initial guess as in $=-4$.
*"Go for" means "attempt to obtain (solution)". Related to MOPT4, T2, XSWING, and NSWING.

MTMASS Mission-type selector pertaining to the primary target.
$=0$ Flyby mission.
1 Orbiter (high-thrust retro-maneuver without velocity loss).
2 Orbiter (high-thrust retro-maneuver with velocity loss).
3 Specified arrival excess speed $v_{\infty n}$.
If $v_{o n}=0$, rendezvous mission
If $v_{\infty n}>0$, controlled flyby mission
No retro-maneuver in either case.
4 Orbiter (Electric propulsion system performs spiral maneuver. Arrival excess speed $v_{\infty 01}$ must be specified as zero).
Other parameters which may be related to MTMASS are DMRETR, CTRET, RPER, RAP, THRET, SPIRET, JPP, JT, and JA.

MUPDAT Fiag indicating whether iterator independent variables at end of one case are to be updated for use as first guesses of next case. $=0$ Do not update independent parameters.

1 Update independent parameters for next case to be those obtained at end of iteration on the current case.
MYEAR
Year of reference date (e.g., 1982). Related to MONTH, MDAY, and HOUR.
*NDELTA

NDIST Identification number of celestial body to be used as the reference for the commuication distance and angle measurement printed in the Extremum Point Summary Table. Identification code is the same as for MOPT2. Useful for determining minimum distance of spacecraft to other bodies in the solar system, including the primary target when attempting to generate a solution for the first time.
NEW Master logical indicator for invoking the improved spacecraft model logic; related to all other inputs flagged by an asterisk().
$=T$ Use new spacecraft mode?
$=F$ Use old spacecraft model
NHUNG Maximum number of propulsion-corner-proximity occurrences allowed in a given iteration-sequence. Reiated to GAP.
*NMAX The maximum number of operating thrusters, $n_{\max }$. Related to NMIN and NDELTA.
*MMIN The minimum number of operating thrusters, $n_{m i n}$: greater than zero -- pertains to thrust phases only. Related to NMAX and NDELTA.

NORMAL Automatic adjoint-variable scaling.
$=0$ No action.
1 All Λ and $\dot{\Lambda}$ are scaled such that $\lambda_{\text {vo }}$ becomes unity.
NPERF Identification number of end condition that is to be used as the performance index when employing the direct parameter optimization feature (Improve Mode). The identification code is the same as the i in the Yi end condition array.

NPRINT Print selection flag. Permits selection of amount of printout desired on each case.
$=0$ Print only the case summary.
1 Print switching point summary of fina? trajectory.
2 Print MINPUT and case setup.
4 Print trajectory summary on each iteration.
8 Print partial derivative matrix each iteration. (Continued on next page)

Combinations of options obtained by summing options desired. If NPRINT > 15, printout consistent with NPRINT $=0$ is obtained. If the sign of NPRINT is reversed to negative, the iterator independent and dependent variables additionally are printed for every trajectory which HILTOP generates (including neighboring trajectories).

NSET Iteration-sequence control ariay.
NSET(1) Not used for input.
NSET(2) Not used for input.
NSET(3) Maximum number of iterations permitted in attempting to satisfy constraints in satisfy mode. If zero, no upper limit imposed.

NSET(4) Flag indicating whether constraints are to be satisfied prior to entering improve mode.
$=0$ Satisfy constraints first.
1 Proceed immediately to improve mode.
NSET(5) Maximum number of iterations permitted after entering improve mode. Setting $\operatorname{NSET}(5)=1$ causes iterator to be bypassed and computes single trajectory to obtain printout.

NSWING Swingby continuation analysis option indicator. NSWING must be negative and has the same definition as MSWING (which see); NSWING must be used when MOPT4(1) >0, and may be used when MOPT4(1) <0. If MOPT4 (1) <0 and MSWING(i$)=0$, then MSWING(i$)$ will be set to the value of NSWING. Related to MSWING, MOPT4 and $T 2$.

NSWPAR Iterator independent-variable perturbation-increment control. $=0$ No action.

1 Allows the iterator to vary a given independent-variable perturbation Δx whenever a neighboring trajectory is detected which has a different number of thrust switch points than the associated nominal trajectory. Δx is varied until the same number of switch points is achieved.

NTAPE Specifies the unit-number for the ASTEA trajectory tape. Pertains to when MPUNCH $\leqslant-101$.

Ascending node angle (with respect to vernal equinox) of primarytarget orbit. Input only when MOPT3 = 11. Related to CNI, ECI, SAI, SOI, TPI, EMUODD, and RADODD. [deg]

OMIX	Array of five elements, the first three of which may be currently used. Ascending node angles of intermediate-target orbits. Input $\operatorname{OMIX}(i)$ only when $\operatorname{MOPTX}(i)=$ I7. Related to CAIX, ECIX, SAIX, SOIX, TPIX, EMUODX, and RADODX. [deg]
*ONHDOT	Logical indicator which allows derivatives of hamiltonian switch functions to de monitored along each trajectory. The user should ignore this input.
*PAD	Maximum power output by solar arrays (or other power source) under reference conditions, $\mathrm{p}_{\mathrm{a} 0}$, as used in expression (2). Related to MATCH. [kw]
*PDIU	Digital interface unit power requirement, $p_{d i u}$, as used in expression (9). [kw]
*PLOSS	Thruster neutral propellant loss, \dot{m}_{ℓ}, as used in expression (14). [equivalent amps]
*PLV	Power processor low voltage input power requirement, $p_{\ell V}$, as used in expres:ion (9). [kw]
*PMM	Mission module power requirement, p_{mm}, as used in expression ($\mathrm{g}_{\text {) }}$. [kw]
*PNFLOM	Neutralizer propellant flow rate, \dot{m}_{n}, as used in expression (14). [equivalent amps]
POWFIX	Launch-vehicle-independent (i.e., no launch vehicle) trajectory option in which the value of POWFIX is the spacecraft's reference power. [kw] Not available when NEW $=T$.
*POWMAX	Maximum input power to an individual thruster, $\mathrm{p}_{\text {max }}$, as used in expression (25a). When non-zero, this input overrides CURMAX. [kw]
*PRAMP	Logical indicator used for special printout during implementation and debugging of the new spacecraft model. The user should ignore this input.
*PROOT	General logical indicator allowing more printout from the HILTOP trajectory function monitoring module. $=\mathrm{F}$ No printout from the function monjtoring module. $=\mathrm{T}$ Generates summary printout from the function monitoring module along the summary trajectory of each case.

PSIGN Flag defining the sense of the launch hyperbolic excess velocity relative to the initial primer vector. A value of tl. results in the assignment of the geocentric right ascension of the excess velocity equal to that of the initial primer vector. A value of - 7 . causes the geocentric right ascension of the excess velocity to be 780 degrees from that of the initial primer.

RADODD

RADODK

RAP Apoapse distance of capture orbit about primary target. [planet radii]

REVS : Number of complete revolutions of the baliistic trajectory generated when the associated input MOPT is used. Must be a positive whole number.

RPER Periapse distance of capture orbit about primary target. [planet radij]

SAI Semi-major axis of primary-target orbit (must be positive). Input only when MOPT3 = 11 . Related to CNI, ECI, OMI, SOI, TPI, EMUODD, and RADODD. [AU]

SAIX Array of five elements, the first three of which may be currently used. Semi-major axes of intermediate-target orbits (must be positive). Input SAIX (i) only when MOPTX(i) $=11$. Related to CNIX, ECIX, OMIX, SOIX, TPIX, EMUODX, and RADODX. [AU]

SOI Argument of perihelion of primary-target orbit. Input only when MOPT3 $=11$. Related to CNI, ECI, OMI, SAI, TPI, EMUDDD, and RADODD. [deg]

Array of five elements, the first three of which may be currently used. Arguments of perihelion of intemediate-target orbits. Input SOIX (i) only when MOPTX $(i)=11$. Related to CNIX, ECIX, OMIX, SAIX, TPIX, EMUODX, and RADODX. [deg]

SPIRET Retro-stage specific impulse (pertaining to the retro-maneuver at the primary target). [sec]

STATE Array of six elements containing the Cartesian position and velocity components of the primäry target. Use onty when MOPT2 $=0$ and the trigger settings of $Y 1$ (2) through $Y 6(2)$ are 0 or 1. [AU, AU/ tau] (tau $=58.132440997$ days)

STEPT
Thrust-phase computation step size, Δu. Related to AN.

TCOAST Array of twenty elements, consisting of the durations of the coast phases corresponding to the coast-phase start-times input in the associated array TOFF. [days]

TDV Time of occurrence of an impulsive deep space burn, in days from the start of the trajectory, which may be used only if the entire trajectory is ballistic (i.e., electric propulsion is not permitted with this option, nor is a third intermediate target). Iterator independent variables X64, X65, and $\times 66$ must be turned on, as these are used as the ΔV vector components of the deep space burn in EMOS. Also, set MAXHAM $=0$. The following special feature is available regarding a first intermediatetarget. If $1.05<$ TDV <2.05, then the burn occurs (TDV - 1.D5) days after passage of that target; if TDV > 2.D5, the burn occurs (TDV - 2.D5) days before passage of that target. [days]

TGO Ballistic trajectory-extension print option. When zero, no action. When positive, $T G 0=$ the number of days that the trajectory is to extend ballistically beyond the primary-target when no swingby-continuation is requested, and ballistically beyond the (last) post-swingby target when swingby-continuation is requested (in addition to the post-swingby trajectory segment itself). Any negative value will invoke printout of only the post-swingby trajectory segment or segments when swingbycontinuation is requested. Applies also to trajectories with multiple swingbys. [days]

THRET Retro-stage thrust, f_{r}, used only when MTMASS $=2$. [1bs]

TOFF

TPI Time from reference date (MYEAR, etc.) to perihelion passage,
\quad for the primary target. Input only when MOPT3 $=11 . ~ R e l a t e d ~$
TPI Time from reference date (MYEAR, etc.) to perihelion passage, to CNI, ECI, OMI, SAI, SOI, EMUODD, and RADODD. [auys]
Array of twenty elements, consisting of the times, in days from the start of the trajectory, at which imposed coast phases are to begin. Times must be in ascending order. Related to TCOAST. [days] First negative value indicates end of input.

Array of five elements, the first three of which may be currently used. Times from reference date (MYEAR, etc.) to perihelion passages, for the intermediate targets. Input TPIX(i) only when MUPTX $(\mathrm{i})=17$. Related to CNIX, ECIX, OMIX, SAIX, SOIX, EMUODX, and RADODX. [days]

Solar-cell degradation characteristic-time; nuclear electric pro- pulsion radioactive-decay characteristic-time. Related to MPOW. [days] The default value must be used when NEW $=T$.
*TRATIO Minimum throttling ratio, $t_{\text {ratio }}$, as used in expression (25b). When non-zero, this input overrides CURMIN.

TSCALE Iterator dependent-variable tolerance-interval scaling factor; scales all tolerances multiplicatively by the amount TSCALE.

T2 Array of ten elements consisting of initial estimates of swingbycontinuation trajectory-segment flight-times, i.e., T2(i) corresponds to MOPT4(i). [days]

VOLTAGES The beam voltages are input as iterator independent variables X36 through X40 (which see).

XANGT Latitude of the launch site. Used on7y if LAUNCH is non-zero. Related to XANG2. [deg]

XANG2 Maximum parking orbit inclination permitted by range safety considerations. Used only if LAUNCH is non-zero. Related to XANGT. [deg]

XSWING Array of velocity vectors consisting of initial velocity guesses of a given post-swingby trajector; segment. Used only when either NSWING or MSWING has a value of -4 or -5 . See especially the description of MSWING $=-4$. V:locity consists of exactly the same values as found in the V7, V2, V3 locations of the trajectory blyck print (first block). Related to MSWING, NSWING, MOPT4, and T2. [AU/tau]

Array of seven elements, the first six of which contain the Cartesian position and velocity components of the launch planet. The seventh element is not used for input. Used only when MOPT2 $=0 . \quad[\mathrm{AU}, \mathrm{AU} /$ tau $]$

The following describes the iterator independent and dependent variable arrays of the boundary value problem. Input pertaining to the individual independent parameters is contained in the arrays $X 1$ through $X 70$. The independent-parameter arrays have five elements for each variable, as follows (where $\mathbf{i}=1,2,3, \ldots, 70$):
$X i(1) \quad$ Input value of parameter. Must be input regardless of trigger setting. If trigger is on (i.e., $X i(2)=1$), input value is used as initial guess of independent parameter and is varied at each subsequent iteration. If trigger is off, the parameter is not used as an independent parameter and is not changed.
$\mathrm{Xi}(2) \quad$ Trigger indicating whether parameter is to be an independent parameter in boundary value problem.
$X i(2)=0$ Not an independent parameter. (Trigger is "off").
1 Use as independent parameter. (Trigger is "on").
$\mathrm{Xi}(3) \quad$ Maximum change to parameter permitted in a singie iteration. Should be a positive quantity. Used only if trigger is on. Units are same as that of the parameter.
$X_{i}(4) \quad$ Perturbation increment used to compute partial derivatives by finite differences. Used only if trigger is on. Units are same as that of the parameter.
$\mathrm{Xi}(5) \quad$ Weighting factor. Should be a positive quantity. A value of 1. is generally recommended. The larger the weighting factor, the more the parameter is inhibited from varying. Used only if trigger is on.

The independent variables are as follows:

X1	$\mathrm{A}_{0}(1)$	Initial primer vector.
X 2	$\left.\mathrm{A}_{0}(2)\right\}$	
X3	$\mathrm{n}_{0}(3)$	
X4	$\dot{\Lambda}_{0}(1)$	Initial primer derivative.
$\times 5$	$\left.\dot{\Lambda}_{0}(2)\right\}$	
X6	$\dot{\Lambda}_{0}(3)$	
X7	$\lambda_{v o}$	Initial mass-ratio adjoint-variable
$\mathrm{X8}$	λ_{τ}	Propulsion-time adjoint-variable. Should be zero when NEW $=T$.
X9		Not used.

X10 δ Geocentric dectination of launch hyperbolic excess velocity. [deg]

There is no conversion from input to internal units for any of the adjoint varjables.

$$
\text { XI1 } \quad \begin{aligned}
& \text { Reference thrust acceleration, } g .\left[\mathrm{m} / \mathrm{sec}^{2}\right] \\
& \text { Ignored when NEW }=\mathrm{T} .
\end{aligned}
$$

X 12 Electric propulsion system jet exhaust speed, c. [m/sec] Ignored when NEW $=\mathrm{T}$.

XI3
KT4
Launch hyperbolic excess speed, $\mathrm{v}_{\mathrm{m}_{0}} \cdot[\mathrm{~m} / \mathrm{sec}]$
Hyperbolic excess speed at primary target, $\mathrm{V}_{\text {col }}$, [$\mathrm{m} / \mathrm{sec}$]

075 Initial time, t_{0}, measured from the reference date (MYEAR, etc.). [days]
$\times 16$
$\times 17$
Time at the primary target, t_{n}, measured from the referente date (MYEAR, etc.). [days]

Launch parking orbit inclination, i. Used only if LAUNCH $=1$. Optimized internally by the program if both X17 and Y17 triggers are off. [deg]
X18 $\quad \dot{x}_{0}$ Initial spacecraft heliocentric velocity. Not $X 19$
$\times 20$

$$
\left.\begin{array}{l}
\dot{y}_{0} \\
\dot{z}_{0}
\end{array}\right\}
$$ required unless one of the three triggers is on. [AU/tau] (tau $=58.132440991$ days)

X21
Constant thrust cone-angle, ϕ. Non-zero value invokes the constant- ϕ constraint. $0<\delta \leqslant 180^{\circ}$. Zero-value implies that ϕ is optimized aiong the trajectory (variabie \$). [deg]

X22 through X29 are currently not used (although some locations following X21 are reserved for additional constant thrust cone-angles).
$X 30$ $\lambda_{s} \quad \begin{aligned} & \text { Degradation-time adjoint-variable. } \\ & \text { zerc when NFW }\end{aligned}=\mathrm{T}$.

X31 through $\times 35$ are currently not used.

X36 through $X 40$ are the constant (along the trajectory) beam voltages, in volts. When $N E W=T$, at least $X 36$ must de greater than zero.

Values of voltages must be ascending, starting with $X 36$ as the lowest value. Value of zero indicates end of inputs, e.g., $X 39=0.00$ indicates there are three voltage leveis to be simulated, X36, X37, and X38. X47 through $\times 50$ pertain to the first intermediate target $X 57$ through $X 60$ pertain to the second intermediate target, and $X 61$ through $X 70$ pertain to the third intermediate target. The corresponding infermediate-target parameters are ignored
if the intermedjate target is absent. Subscripts 1, 2, and 3 pertain to the first, second, and third intermediate targets, respectively. Intermediate targets are invo ked via the MOPTX array

\begin{tabular}{|c|c|c|}
\hline $\times 41$ \& $$
A_{1}(1)
$$ \&

\hline $X 42$

443 \& $$
\Lambda_{1}(2)
$$ \& \multirow[t]{2}{*}{Primer vector (at start of trajectory segment)}

\hline X43 \& Λ_{7} (3) \&

\hline X44 \& $\dot{\Lambda}_{7}(1)$ \&

\hline X45 \& $\dot{\Lambda}_{7}(2)$ \& \multirow[t]{2}{*}{Primer derivative (at start of trajectory segment)}

\hline X46 \& $\dot{\Lambda}_{1}(3)$ \&

\hline $X 47$ \& \& Encounter speed at first intermediate target, $\mathrm{v}_{\mathrm{\omega}]} .[\mathrm{m} / \mathrm{sec}]$

\hline $X 48$ \& \& Time at the first intermediate target, t_{7}, measured from the reference date (MYEAR, etc.). [days]

\hline X49 \& \& Sample-mass factor, $k_{\text {samp } 1,}$ for sample-retrieval at first intermediate target.

\hline $\times 50$ \& \& Drop-mass factor, $\left.k_{d r o p ~}\right\}$, for instrument-package dropoff at first intermedjate target.

\hline
\end{tabular}

The independent varjables $\times 51$ through $X 60$ and $X 61$ through $X 70$ are identical to $\times 41$ through $\times 50$ except that they pertain to the second and third intermediate targets, respectively. A third intermediate target may not be present when simulating ballistic missions having a deep space burn (See TDV), in which case $\times 64, \times 65$, and $\times 66$ are used as follows:

Deep-space velocity-increment. [AU/tau]

Inputs pertaining to the individual dependent parameters are contained in the arrays $Y 1$ through $Y 70$. The dependent-parameter arrays have three elements for each variable, as follows (where $j=1,2,3, \ldots, 70$):
$Y_{i}(1) \quad$ Desired value of the dependent parameter.
Yi(2) Trigger. If off (i.e., equal to zero), the parameter is ignored and is not considered a dependent parameter. Then the other two inputs pertaining to the parameter need not be input. If trigger is on, (i.e., not equal to zero), the parameter is considered to be a dependent parameter or constraint. Certain of the parameters may have up to three non-zero trigger settings. These will be discussed individually below.
$Y i(3)$
Tolerance of desired value (full interval width).

It should be noted that the transversality conditions, which comprise some of the parameters, are developed under the assumption that all constraints are of the point constraint type. Therefore, the satisfy-mode is sufficient in solving any optimization problems for which a complete set of transversality conditions is available.

The dependent-parameter arrays are as given below. $T(x)$ represents "the transversality condition associated with x " and the function $T(x)$ will have different values depending upon the constraints imposed on the problem. See NOMENCLATURE for definition of symbols and subscripts.

Trigger 1				Trigger 2		Trigger 3
$\gamma 1$	Δx_{n} [AU]	'	a [AU]	Solar di	stance*[AU]	$T(\sigma)$
Y2	Δy_{n} [AU]	!	e	$T\left(\theta_{t}\right) *$		$T\left(\theta_{t}\right)$
Y3	$\Delta z_{n}[A U]$!	i[deg]			$T\left(t_{n}\right)$
Y4	$\Delta \dot{x}_{n}[$ AU/tau]	:	$T(\Omega)$	$T\left(\dot{x}_{n}\right)$		$T(\xi)$
Y5	$\Delta \dot{y}_{n}[$ AU/ tau $]$		$T(\omega)$	$\left.T\left(\dot{y}_{n}\right)\right\}$	optimal flyby	$v_{\infty 0}$
Y6	$\Delta \dot{\Delta}_{n}[$ [$4 U /$ tau $]$,	T(f)	$T\left(i_{n}\right)$)		$T(\lambda)$

*Applicable only for two-dimensional motion in the $x y$ plane. Also requires that MOPT2 $=0$.

Under Trigger 1 above, the first set of conditions applies to ordinary targeting conditions for position and velocity, and also to extra-ecliptic conditions to be satisfied when IOUT $=7$; the second set of conditions applies to extra-ecliptic missions when IOUT $=2 . T(\Omega), T(\omega)$, and $T(f)$ are symbols for the transversality conditions yielding optimum final node angle, argument of perihelion, and true anomaly, respectively.

	Trigger 1	Trigger 2		Trigger 3
Y7	v_{n}	$\lambda_{\text {vn }}$		$\mathrm{m}_{\text {net }}{ }^{[\mathrm{kg}]}$
Y8	T(τ)	τ [days]	---	Not used when NEW $=$ T.
$Y 9$	Currentiy			
Y70	$T(\delta)$	$\delta[$ deg]		Used only if LAUNCH $\neq 0$.
771	$T(g)$	$\mathrm{g}\left[\mathrm{m} / \mathrm{sec}^{2}\right]$		$\mathrm{P}_{\text {ref }}[\mathrm{kw}]$ - Not used when NEW $=T$.
712	T(c)	$c[m / \mathrm{sec}]$	---	Not used :hen NEW = T .
Y 73	$T\left(v_{\infty 0}\right)$	$\mathrm{v}_{\infty 00}[\mathrm{~m} / \mathrm{sec}]$		
Y 74	$T\left(v_{\infty}\right)$	$\mathrm{v}_{\text {mo }}[\mathrm{m} / \mathrm{sec}]$		extra-ecliptic inclination [deg]
$Y 15$	$T\left(t_{0}\right)$	t_{0} [days]		
Y16	$T\left(t_{n}\right)$	t_{n} [days]		$t_{n}-t_{0}$ [days]*

*Time transversality with flight tinie fixed is assigned to Y75 under Trigger 1.
$Y 77 \quad T(i)$
i[deg], where $\mathrm{i}=$ parking orbit inclination.

Y18
$Y 19$
Y20
Y27
$T(\phi)$
$\dot{x}_{0}[\mathrm{AU} / \mathrm{tan}]$
\dot{y}_{0} [AU/tau]
\dot{z}_{0} [Al/ tau]
$\phi[\operatorname{deg}]$ for $\phi=$ constant with time.

Y22 through Y29 are currentily not used.
(Degradation time, not used when $\operatorname{NEN}=\mathrm{T}$.)

Y31 through Y35 are currently not used.
Y36 through Y40 pertain to the set of constant beam voltages:

Trigger $1 \quad$ Trigger 2
*Y36
*Y37
*ү 38
*Y39

* 40
$T\left(V_{I}\right)$
$V_{\text {I }}$ [voits]
(Caution: see discussion in section 2.2 before attempting to optimize the voltages)

Y41 through Y 50 pertain to the first intermediate target:

Y4 4
Y42
Y43
Y44
Y45
Y46
Y47
Y48
Y49
Y50
Trigger 1 \quad Trigger 2 $\Delta x_{1}[$ AU] $\Delta y_{7}[A U]$ Δz_{1} [AU]
\(\left.$$
\begin{array}{l}\Delta \dot{x}_{1}[A U / \text { tau }] \\
\Delta \dot{y}_{1}[A U / \text { tau }] \\
\Delta \dot{z}_{1}[A U / \text { tau }]\end{array}
$$ \quad $$
\begin{array}{l}T\left(\dot{x}_{1}\right) \\
\end{array}
$$ \begin{array}{l}T\left(\dot{y}_{1}\right)

T\left(\dot{z}_{1}\right)\end{array}\right\} \quad\)| optimal |
| :--- |
| flyby |

$T\left(t_{1}\right)$ t_{T} [days]

Y51 through Y 60 and Y 61 through Y 70 are identical to Y 41 through Y 50 except that they pertain to the second and third intermediate targets, respectively.

3.3 Default Values of Input Parameters

The following is a complete, alphabetical list of the default values of program input quantities having non-zero (and non-false) default values, except for the iterator arrays. All other inputs are zeroed (or set false). The default values of the iterator arrays $X i(1), X i(2), Y_{i}(1)$, and $Y i(2)$, for $i=1,2,3, \ldots, 70$, are zero, and the default values of $X_{i}(3)$ through $X_{i}(5)$ and $Y i(3)$ for the same range of i are listed in the listing of program inputs of Sample Case A. Exceptions to the setting of $\mathrm{Xi}(\mathrm{J})$ to zero are displayed below.

ALPHAA	15.	NDELTA	1
ALPHAT	15.	NDIST	3
AN	1.5	VHUNG	25
AR	1.	VMAX	4
BI	. 76	NMIN	1
$\operatorname{CSEP}(1)$. 987	NPRINT	7
$\operatorname{CSEP}(2)$	-0.018	NSET (3)	300
$\operatorname{CSEP}(3)$. 08	NSET (5)	300
$\operatorname{CSEP}(4)$	2.3	NSWPAR	1
$\operatorname{CSEP}(5)$. 002	NTAPE	17
$\operatorname{CSEP}(6)$. 9316667	PAO	35.
$\operatorname{CSEP}(7)$. 0033333	PDIU	. 02
CTANK	. 03	PLOSS	. 267
CTRET	1/9	PLV	. 03
CILRMAX	2.	PMM	. 4
CURMIN	. 5	PNFLOW	. 04
CVOLT	10.	POWFIX	-1.
DEFFIC	. 89	PSIGN	1.
DI	13.	PTS	. 2
DLOSS	198.	RADODD	1.
DVOLT	36.	RAP	38.
ETAPD	. 95	RPER	2.
ETCONV	. 95	SAI	1.
GAMMAX	1.	SPIRET	300.
GAP	. 0001	STATE (1)	1.
HOUR	12.	STATE (5)	
IRK	1	STEP1	. 03125
IRL	1	STEP2	. 125
ITF	3	TDV	-1.
MAXHAM	5	TGO	-1.
MDAY	1	THRET	400.
MODE	4	TOFF	20*-1.
MONTH	1	TPOUER	10.**30
MOPT3	10	TSCALE	1.
MUPDAT	1	T2(i)	$50 * i$
MYEAR	1975	(Continued on next page)	

$\times 0(5)$	1.0000015
$\times 11$	$4 . \times 70^{-4}$
$\times 12$	$3 . \times 10^{4}$
$\times 36$	1600.
$\times 37$	2000.
$\times 38$	2400.
$\times 39$	2800.
$\times 40$	3200.

4.0 SAMPLE PROBLEM

The sample problem consists of a Saturn orbiter mission simulation. The new HILTOP spacecraft model is employed. The assumptions, solution characteristics, and a graph depicting the optimal thruster subsystem operating time-history are displayed on the following pages, followed by a display of the complete program output.

The complete NAMELIST input data set used to generate this sample problem is reproduced below.
 $\mathrm{X} G(2)=1 . \mathrm{DO}, \mathrm{X} 13(2)=1 . \mathrm{DO}, \mathrm{X} 14(2)=1 . \mathrm{DO}, \mathrm{Y} 1(2)=1 . \mathrm{DO}, \mathrm{X} 2(2)=1 . \mathrm{DO}, \mathrm{Y} 3(2)=1 . \mathrm{DO}$ $Y 4(2)=1.00, Y 5(2)=1 . D 0, Y 6(2)=1.70, Y 13(2)=1 . D 0, Y 14(2)=1.00$ $\mathrm{MOPTR}=3, \mathrm{MOPR}=6, \mathrm{RPFR}=1,1 \mathrm{DO}, \mathrm{RAP}=11 . \mathrm{DO}, \mathrm{THRFT}=6 . \mathrm{D} 1, \mathrm{~T} P \mathrm{P}=1, \mathrm{TT}=1, \mathrm{JA}=1$

 $\mathrm{XI}=-9.423753245854 \mathrm{D} 01, \mathrm{XZ}=5.559740445758 \mathrm{D} 00, \mathrm{XB}=2.3844702115090-01$ $\mathrm{Y} 4=-1.525781232611 \mathrm{D} 01, \quad \mathrm{XF}=-7.715646691990 \mathrm{D} 01, \quad \mathrm{XG}=1.081823457165 \mathrm{n}-\mathrm{n} \mathrm{J}$ $\mathrm{X13}=4.650935939200 \mathrm{D} 03, \mathrm{X14}=5.814010834324 \mathrm{D} 03$ RTRND

SAMPLE PROBLEM

1900 Day Saturn Orbiter

Assumptions

- Launch on 16 Lecemider 1985
- Shuttle/IUS launch vehicie
- 1.1×11 Saturn radii capture orbit
- Retro stage with 300 seconds specific impulse and 60 pounds thrust; include velocity losses in calculations
- Allowable beam current range, 0.5-2.0 amps
- Permit 5 discrete values of beam voltage - $1600,2000,2400$, 2800 , and 3200 volts
- Assume maximum of 8 operating thrusters, minimum of 1 thruster, may be switched in increments of 1 thruster
- Solar array sized to accommodate 8 thrusters operating at maximum beam current and beam voltage at 1 Au
- $\alpha_{a}=15 \mathrm{~kg} / \mathrm{kw} ; a_{t}=22.5 \mathrm{~kg} / \mathrm{kw} ; \mathrm{k}_{\mathrm{t}}=.03, \mathrm{~m}_{\mathrm{b}}=0$,

$$
m_{r s}=0, k_{r t}=.111
$$

- Entire SEP system jettisoned prior to capture orbit insertion
- $\mathrm{C}_{1}=.987, \mathrm{C}_{2}=-.018, \mathrm{c}_{3}=.08, \mathrm{C}_{4}=2.3, \mathrm{c}_{5}=.002$,

$$
c_{6}=.9316667, c_{7}=.0033333
$$

- $V_{G}=10, n_{D}=.89, \varepsilon_{I}=198, \Delta V_{I}=36, n_{P d}=.95, n_{\operatorname{conv}}=.95$
- $\quad \dot{m}_{\ell}=.267, \dot{m}_{n}=.04, p_{d i u}=p_{\ell V}=p_{p m i n}=p_{t s}=0$
- Departure and arrival excess speeds are optimized.

1900 Day Saturn Orbiter

Solution Characteristics

$$
\begin{aligned}
m_{0} & =4237 \mathrm{~kg} \\
m_{\mathrm{a}} & =923 \mathrm{~kg} \\
m_{\mathrm{th}} & =1384 \mathrm{~kg} \\
m_{\mathrm{p}} & =853 \mathrm{~kg} \\
m_{\mathrm{t}} & =26 \mathrm{~kg} \\
m_{\mathrm{r}} & =655 \mathrm{~kg} \\
m_{\text {net }} & =396 \mathrm{~kg} \\
v_{\text {mo }} & =4651 \mathrm{~m} / \mathrm{sec} \\
v_{\text {mo }} & =5814 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

total burn time $=778$ days
average thruster operating time $=7359$ hours
specific impulse $=4978$ seconds $0 I_{B}=2 \mathrm{amps}, V_{I}=3200$ volts
overall efficiency $=.6965 @ I_{B}=2$ amps, $V_{I}=3200$ volts

1900 DAY SEP SATURN ORBITER MISSION
OPTIMA THRUSTER SUBSYSTEM OPERATING CHARACTERISTICS
LAUNCH DATE - 16 DECEMBER 1985

$000000000000000000 \cdot 1$ 20 0030000000000000＇1 00 0t00000000000000 －0c $0000000000000000^{*} 1$ －00 00000000000000000•1 －UL 0000000000000000：1 000000000000000600 4c 0 00000000000． － 00 00000000000 －30 0c 0000000000000 －1 － 00 0000c00000000000－1 400 0Ú 0000000000000 ＊ as 00w000000000000 oc 000000000000000000．1 －OC 0000000000c00000＊1 － 00 000cca00000000000＋1 －Uu auvuにviouec 00350＊ － 00 OÚE000c00000000． 1 － 00 00000 0c 000000000 ．1 4u gut undocococupooti － 00 00000000c0000 $0000^{*} 1$ －0c 000000000c000000＊1 $000000000000000000 \% 1$ －00 0006000000000000•1 －00 0600500330035000．1 －00 0000000000000000．1 －00 0000000000000000＇I
 00 00c000000c090000．： $000000000000000000^{\circ} 1$ us a00 $300000000000 \cdot 1$ 00 00600000000000c00．1 －OC accococo00000000．1 00 060GOOC00co00000．1 00 00000cc0000co000＇？ 3 Mnu utio $106000000 \cdot 1$ 00 06000900000000000．1 oc cogoocococcoo 000＊1 in ouscucoczose3000．1 Oc 0couocacocooococ． 00 060Gcoccooodo 000． $0000 * \operatorname{coc} 0000000000 * 1$ 00 KL二 $00000000000000^{\circ} 1$ oc acococo0．0000000000．1 －0． 000000000000300000^{1} $.0006000000000000000^{\circ} 1$ － 00 6000060000000000．1
 －OC $0000000000000000+1$ $000000000000000000 \cdot 1$ －00 00000000000000000．1 on 00cooco $000000000 \cdot 1$ －DO 00000ccococooo 000° ． － 00 00000000000000000．1 － 00 00000000000000000．i －30 Ousis00300c000000＊I
－80－00000000000000000＊ －80－0000000000040000 10－0668656566066606＊ － 50 － $0666656865856665^{\circ} 6$ －00－0000000000000000＂ －90－000000002000000000＊
 －00－00000002000000000＊ － $00-0000000000000000$＂ － 90 －0000003000000000． －0000000000． － 0 0－065655 40－06506555 66606565^{-6} －90－00000007000000000
 －00－0000003コ $00035000 \cdot 1$ － $60-0000000060000000$－
 － 90 －00000002000000000＊ － $80-0656555566566666^{\circ} 6$ ＂ $80-0666656566665665^{\circ}$ ＂E0－0656646566666686＊O －E0～0686666566606666＊ ＂$E 0$－065665 $55656.56566^{\circ} 6$ ${ }^{4}$ s0－06566556666666655＊ ${ }^{4} 5 \mathrm{v}-0666656566666655^{\circ} 6$ － $96-0666656666656865^{\circ}$ － 50 00666646365E66665 ${ }^{\circ}$ －Su－0566656666f66665＊6 $50-0656665660566665^{\circ}$ ＊50－065664 55656666655^{*} 50－0656666566066656 ＇ $50-066666566666$ fu6 $66^{\circ} 6$ $450-0656566506666665^{\circ} 6$ ＂S5－0056656666666666＂ ＊ $90-0666666666666666^{\circ} 6$ －GJ－0656665665666656 45：－0666656666656555－
 －gu－v66tintos c6666665＊ 6 ＊50－065665 $6566666666^{\circ} 0$ － $50-0656656565666666^{\circ}$ 40－0656655565656666＊ ＊ $20-066666^{3} 966666666^{\circ} 0$ ＊ $20-0856666566606066^{\circ} 0$ ＊ $00-0666666666666666^{\circ} 0$ Ty0 －11－0000000000 C10 $000^{\circ} 1$ － $20-0655665666564560^{\circ} 0$
 － 20 －0 $055655666666665^{\circ} 6$ －20－0656465560606006．6 － $80-0000000000000000$－ －00－0000000000000000 －84－ ${ }^{4} \mathrm{~B} 0-0000002300040002$＊ －80－9000000300000000． －00－c00000030 00030000 －I
－00 00ca000000000troos $000000000000000000 \cdot \varepsilon$ 10 $10000000000000000 \times 5$ 20 roovaloduoucovodes －000 00C00000000000000＂E － 00 C0000000000000000：E －co aeruejuuvounviunoe －a 0 00000000030j uvor －00 C0 $00000000000000^{\circ} \mathrm{E}$ － $000000000000002000 * \mathrm{E}$ 10 cecuocsesús － 20 0000000000000000＊S －00 cocooopooc000000＊E － co ocoununuuuvjuusoo E －co cocuoolojoo 00 cce00000000000000＊E － 00 0 $00000000002000^{\circ} \mathrm{E}$ 00 00cco000900000000．E 2c 0000006000000000＊： －20 0000000000000600＊T ？ 70 1000000000000c00＇T
 70 0eccoococoj000000＇t $100000000000000060^{\circ} 1$
 to occouou000000 000° I 10 cocoos00000000000．t － 10 0000000005003c00＊ 10 noccooodosogocoo－ － $50000006000060 \mathrm{E} \mathrm{O}_{\mathrm{O}} \mathrm{I}$ TO aCCDO00000 300000^{-1} 10 cocoo 00000000 COO I －Io ccouosuduentuvao＇ －10 accooou000005000＊I 1100000000000003600% I － 10 nocculudonuojut00＊ TO gOCOOOC000000000＊I $100000000000060000^{\circ} 1$ 00 cocoovo0000000000 － 00 dcceope000000000
 I0 0000000000000000：T 20 c000000000000000．1
 －20 0000600000003600\％ ro cooo 00 Jaunajovors 50－004606060606s 6560 10 000000Cc00000000．6 00 2000000000000000．E －0C 0000000000003C02．
 00 00000000000020000 E 00 00000000000000000．E CO $00000000000000000^{\circ} \mathrm{E}$ Co a000voluvudavore
 co n0000000：202000000e

0.0	；
0.0	－
0.0	－
0.0	－
0.0	－
0.0	＊
0.0	．
0.0	
0.0	
0.0	－
1．8005000000000000	00，
1.0003000000000000	00．
1． 06000000000000015	00．
1.000000000000000	00．
1．903000000000：000	00．
1．5：，00000070：2．200	00＊
$0 .:$	＊
0.0	\％
0.0	－
0.0	＊
0.0	－
0.0	－
1． 0 c000000000000000	00.
1．0000000000000000	00．
0.0	＊
0.0	－
0.0	＊
0.0	－
0.0	＊
0.0	＊
0.0	＊
0.0	－
0.0	＊
0.0	－
0.0	－
0.0	＊
0.0	＊
0.0	＊
0.0	＊
0.0	－
0.0	＊
0.0	－
0.0	－
0.0	－
0.0	＊
0.0	＊
0.0	－
0.0	－
0.0	－
0.0	－
0.0	－
0.0	＊
6.0	－
3.0	＊
0.0	－
0.0	－
$0 \cdot 0$	＊
0.0	＊
0.0	＊
0.0	－
0.0	＊
0.0	－
0.0	－
0.0	＊
0.0	＇
\％	－

3.200605009000003000. ． $000000000 \mathrm{co0} 00 \mathrm{ou} 03$. 3.000000000000000330. $3.000 \operatorname{coc} 0 n 0000093.300$.
 3.0000000000000200 00； $5+000050000000052002$ ．
 3000 000000000000 b0： 9．9995099909990190－05． 2．9995995989999490－05．
 9．949599990499931 9．9909599994997240－0 9．999r900620999900－0． G．909cu99009994u4U－05． 9．0995099950994U90－as： 9．9995999999999990－05．
 9．9995999979999940－0b： 9．9995999804999440－05，

 $9.99959969999999 \mathrm{u}-05$ ． $9.999999999999940-05$ 9．9995999994999yツu－05． 9．9995999999974Yט－05， 9．9994999999999ヲ4U～05： 9．9999999999999y90－05． 9.9999999999999 vu－0b， 9．9999999999699990－05． $9.9994997899999490-05:$
 9．9958999909999340－05． 9．949599909499999J－251 9．9999999099999y93－05． 9．9999999599959450－05．
 9．99959999999999910－05： $9.99999995999994 D-05$＊ 9．9997995899999990－05； －95999999799999リン－05， 9．999¢999c99999090～0． $9.999599999999990-05$. 9.9999999999999 9U－05： $9.999599999999999 \mathrm{L-05:}$ 9．9909990c99999000 5，999r99c099090900－05 ．9095090969099000 $9.949099909999400-05$ －9099099599990 －999c909co 999 9400－05． 9．59900909n9099j14 05 9．9995999590999990－05： $9.999509909990940-05$. 9.999 g999999999990－05． $4.9995999909999990-05$. 9．9995999999999タ90－05＊ 9．9995999999999990－03． 9.9995999999999 リטーロ゙ $9.9995999999999990-04$ ， $9.9909999079909940-05$. 9.599 gcy90909999990－05． 9．す994909979999990－05．

1．0000000000070000－013
－Tencercnmermegnd－au 1． $9000000000000000-00$ 1．OC OC 0000ecc OCOOOD－0U 1．oocrocrertcencroder 1．0000000000000000－00 9．9999999999999990－05 9．9999999999599090－07 1： 00 noogoocogoo $0000-08$
1.000000000009090000 1.000000350 coman 0 Re ． 1． 000005000000070000 ． 1．0000000000032cad on． 1.0000000000090000 00． 1,000000000000000000 ． 1.000000000000000000 ． \＄．0000000000000c00 00． $1=000000000000000000$ ， $1=00000000000000000$ 0．

INDEPENDERT VARIABLES


```
(PRE-ITERATION)
DI SCRETE VOLTAGES YOLTSI 2000002400.0
CCMPUTEO MAXIMUM INPUT PGEER TO AN INDIVIOUAL THRUSTER = \(\quad 0.8287 \mathrm{~K}\)
CCPPUTED MIMINUM THसOTILING AתTIO 210.250000
NIT TMRUSTAR FEFERENCE FCWER \(=\) T, 489 KW
aximuh usaele riway pawer dutput \(=\)
MCLSEKEEPIKGFGUER (KK) MIAINUM \(=0.0\) HAXIMUH \(=0.0\). INEREMEVT \(=0.0\)
REFERENCE SPEEIFIC IMPULSE \(=6578.4 \mathrm{SEC}\)
```

thas CASE 1 c CCNVERGED.
I thajectories without parital dertvatives and o trajectories with partial derivatives requtred foh this case

9

original pasi is OE POOR COUSTITX	

Case 1	Switch plint summary							
TI HE	SEMI-MAJOR AXIS	ECCENTRICITY	1NCL ${ }^{\text {ninfion }}$	hode	ang pos	rhag	thavel Page	
H1	Re	R 2	V	$v 2$	$v 3$	mass ratio	thrust ace	
$L 1$	L. 2	12	4	25	1.6	L7	ham	
LG	LC	LPHI	cunc	CLOCK	hatag	POWER FNCT	Switch fnct	
FSI	THETA	PH1	Latitude	LONGI TUDE	FLT PTH ARGLE	Vhag	Patop rime	
MO. Tha	voltage	Curremt	PHAN CUH	SP 1 ¢ ${ }^{\text {P }}$	THRUSt	bEAM PGKER	DUAP PG\%ER	
LTil EF	THR RED	THR EF	PPU EF	PTH EF	55 EF	ARRAY PGwER	ppu poweq	
EARTH	START UF tRAJECTORY: ThRUST ON							
0.0	1.5126E5800 00	$3.521103580-01$	1.9240.40430-02	- 6.44891452004	-2.544443750-14	9.34ng54820-01	0.0	
5*450694970-02	9.755469950-01	0.0	-1.167704500 00	1.01566, ifu-01	3.944174510-04	1.00000000000	6.985091180-02	
-9.423752250 01	5.55974045000	2.384470210-02	-1.525701230 01	-7+7156466) 01	1.001023 460-01	1-300000000 00	2.026021950-01	
0.0	0.7	0.0	1.03294980 02	8.52n9ysjub 31	1.153420570 00	10020432340 00	9.379160560 01	
1.254546640-01	9.21344821001	9.213447700 01	0.0	8.44091462001	-5.396683120-01	1-172113600 00	0.0	
8.0000000000 00	3.200000000 03	2.00000000000	2.04114149000	4.97844449003	3.945731950-01	5.355581400 00	1.053222930 nc	
5.252039110-01	$9.516000000-61$	7.842758670-01	9.348538690-01	9.3722199010-01	9*3833.33 $500-01$	G.276891870 ot	7.453809090 00	
SHITCH THRUST DFF								
7.778249930 02	6.108951960 00	7.837524100-01	$3.064397330-01$	B. 16003787031	1.920504 31002	6.17663077000	1.891612640 92	
3.932390180701	-6.104294020 OC	-3.697229120-03	$2.676450900-01$	-2.970323420-91	-2.0ar $168130-43$	7.995691930-01	0.0	
5.94961645000	-1.165327240 01	-1.056988180 00	3.887837150-01	2.09362441000	-5. 766503080002	2.055816710 01	2.027957410-01	
0.0	0.0	0.0	7-617342910 01	9.13984 5 ¢20 01	1.534565650 00	4.055360260-02	1.005614100-13	
-4.3943235 8000	2.342100830 11	2.380683090 01	-8.007742840-02	-8.634.97-640 11	5.265.231190 01	4.ninger933D-01	7.778219530 02	
0.4	0.0	0.0	6.454002B50-61	0.0	0.0	0.0	2.494b3655d 00	
0.0	9.87030 $0000-0:$	0.0	0.0	0.0	$9.31666700 \mathrm{c}-01$	2.49453655000	0.0	
SATURA	END OF THANECTORY. THRUST OFF							
2.900000000 03	6.104951960 00	7-837524100-01	3.864397330-01	B. 160007370 d	C. 17393847002	1.002554300 01	2.145046910 02	
4. 35941314000	-8.769032440 00	-9.10439064D-02	1.B75501 H2D-01	-2.265755cBJ-02	-1.273732925-03	7.905091930-01	0.0	
1.05170114001	2.422279230 01	-1.626857800 00	3.548513250-03	1091883020030	-8.309283710-03	2-055816710 01	2.027957810-01	
0.0	0.0	0.0	7.652871780 C1	E.176693450 01	1.534565650 00	1.4976日7770-62	5. 201841620 ng	
-3.424770030 00	1.275139740 02	1.27435459002	-2.346800680-01	-5.100670253 01	3.58823940001	1-889181370-01	7.778219950 02	
0.0	0.0	0 -0	4.481207930-61	0.0	$0 \cdot 0$	0-0	$9.212589390-01$	
0.0	9\%870000000-61	0.0	0.0	0.0	9.31 6667000-01	9.212589390-01	0.0	

INDEPENDENT PARAMETERS

1.PRIMIC	5.42375220		2.patmet	5.55974040	00\%	3.HHIM3	2.30447023-0	013	4.P30til	1.52576120	011	5.PODI 21	. 71564670	
6.pootsi	1.08182350	013	7.LMASS	1.00000000	00)	B. LTAUI	0.0	1	9.	$0=0$,	10.DECLNI	0.0	
11, ACCELS	4.00000000	09)	*2.V JET	3.00000000	$04)$	l3.VINFOt	4.65093590	031	14.VI相N	5.81401080	$03)$	15.11Htot	B.20000000	01
16.TAHENt	1.58200000	031	¿7.IPARK!	0.0	1	18,VELOI	0.9	,	19,VELO2!	0.0	,	2C.VELO34	0.0	
21, THET26	0.0	1	22.	O.c)	23.	0.0	1	24.	0.0	1	25,	0.0	
26.	0.0	,	27.	0.0	1	20,	0.0	1	29.	0.0)	30.L0EGR	0.0	
34.	0.0)	32.	C. 0	1	3., 1	0.0	:	34.	0.0	1	35.	0.0	
36.VLlitit	1.60000000	03)		2.00000000	031	36.vilt 31	2.40000003	031	37.VILTAC	2.00000000	031	40.VILJSt	3.20000000	03)
A1.PRI-Al	0.0	1	42.PR2-A	0.0	1	A 3 , Pris-A	0.0	1	AA,PDI-AC	0.0	,	45.POC-AS	0.0	
46.PO3-Af	$0 . r$,	$47 . \mathrm{VINFAC}$	0.0	1	4b-TIMEAI	п.o.	1	Q9,KS AMP	0.0	,	50. KDRLPT	0.0	
51.PRI-GC	0.0	J	52.pRe-d	0.0	$)$	St.PH3-8!	0.0	1	bn, PO1-Bl	$0 \cdot 0$,	55,PD2-06	0.0	
56.PD3-8t	0.0)	\$7.VINFEC	0.0	1	50, TIMEEt	$0.0{ }^{\circ}$	J	b9, KS AMP	0.0)	Gr. KORUPC	0.0	
64*Pti-ct	0.0	\%	52.PR2-C!	0.0	1	GJ.PR3-CI	0.0	1	64.P3i-ct	0.0	,	65,Pロİ-C6	0.0	
66, $\mathrm{POS-Ct}$	0.0	1	67.YINFC!	0.0	1	60.rimect	0.0	7	19.6SAMP	0.0)	1	70, XURUOP	0.0	

DEPENDENT PAFAHETERS

ELECTRIC PMOPULSIOM PAFAMETEHS	
PROP TIHE	
777.4219925092	$5.101603911 *$

RROP TIHE RATED 0.4093799951

AUE ACCEL 0.0004635853 0.0
payldado
396.7836542323

EXtremur points of selected functions

1130.656	0	0	0.0	0.5216	0.6360	3050	0.0	0.0	0.0
1290.957	0	0	0.0	0.5291	0.4 .453	2790	0.0	0.0	c.0
1302.302	0	0	0.0	0.5540	0.6379	2709	0.0	0.0	0.0
1488,139	0	0	0.0	0.5501	0.6524	25\%0	0.0	0.0	0.0
1459.225	0	0	0.0	0.050	0.0506	2543	0.0	0.0	0.0
1666.650	0	0	0.0	0.4995	0.6261	2450	0.0	0.0	0.0
1674.821	0	0	0.0	0.9973	0.0250	2445	0.0	0.0	0.0
1859.478	0	0	0.0	0.4556	0.6031	2362	0.0	0.0	0.0
1067.135	0	0	0.0	0.4341	0.6023	2359	0.0	0.0	0.0
1900.000	0	0	0.0	0.4481	0.5990	2346	0.0	0.0	0.0

				DEPART EARTH					
	\times	Y	z	xodi	ruot	200t	RROIUS	LA1.	LUNG*
HLANET $5 / C$	$\begin{aligned} & 9.95669500-02 \\ & 9.45609500-32 \end{aligned}$	$\begin{aligned} & 9.79546 \mathrm{SgD}-71 \\ & 9.79546990-71 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & -1.0113254000 \\ & -1.1677046000 \end{aligned}$	$\begin{aligned} & 9.23727940-02 \\ & \text { i } 01569220-0: \end{aligned}$	$\begin{aligned} & 0.0 \\ & 3.94417450 \sim n 4 \end{aligned}$	9.84095460-01 9. $04095460-01$	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & \text { E4. } 489 \\ & E 4.409 \end{aligned}$
	x	y	z	XOOT	yout	z00t	Radius	LAT.	LONG.
PLANET 576	$\begin{aligned} & 4.4554131000 \\ & 4.5554131000 \end{aligned}$	-8.76903250 -8.76903240 co	$\begin{aligned} & +4-10639090-02 \\ & -4.10639060-02 \end{aligned}$	$\begin{aligned} & 2.05143350-01 \\ & 1=37550180-01 \end{aligned}$	1.5605s003-01	$\begin{aligned} & -1.32764820-n 2 \\ & -1.27373290-0.3 \end{aligned}$	1.00255430 8.00255430 01	-0.235 -0.235	-61.047 -64.007
\% w-bater	transfer angle	日ETMEEN	IARTH AND	SATURN	ts 2140b049	EGrEES*			

CASE 1 (CCNVERGED) PERFORMANCE SUMHART

puger suurce jertisoned prtur tu Rtiho hantever ENGTHE MASS JETTISONED PRROR TU HLTRO HANEEUER taNkAGE MASS JETIISONED PRIUR TO GETHD HANEUVER

MIGH THRUST CAPTURE MANEUVER STAGE AND DYGIt SUMMART

structure (kg) 65.4512	$\begin{gathered} \text { PROPELLANT (KK) } \\ 589.0612 \end{gathered}$	thrusf (285) 60.0000	$\begin{aligned} & 153 \text { 45EC1 } \\ & 300.0000 \end{aligned}$	BURNING TIME (SEC) 662.1310
PERIAPSE (RXDIT) 2.1000	$\begin{aligned} & \text { APDAPSE GRADIIS } \\ & \text { I } 1 \text { - } 0000 \end{aligned}$	```ORGIT VEL, (M/SEC) 33003.4012```	$\begin{gathered} \text { OEL VEL } T H / 5 E C) \\ 24: 9.5247 \end{gathered}$	$\begin{aligned} & \text { WEL LOSS } \begin{array}{c} \text { tM/SEEC } \\ 322.7827 \end{array} \end{aligned}$

5.0 PROGRAM INSTALLATION AT LeRC

The new version of HILTOP is stored on the UNIVAC system at Lewis in terms of individual source and object subroutine modules, under the name of MASTERS in the general disk file MFILE. A complete alphabetical cross-reference list between HILTOP subroutine names and source module names (disk file MFILE) on the UNIVAC system at Lewis is displayed on the next page.

Implementation of the more sophisticated spacecraft model in the HILTOP computer program has enlarged the program approximately 40 K bytes. Although the older version of HILTOP could execute within the 65 K word capacity of the UNIVAC machine (with a rather simple overlay scheme), the newer version will not fit on the machine at all unless certain sizesaving steps are first taken. In order to construct a viable overlay scheme for the HILTOP program, it was deemed necessary to adopt the ground rule that no overlay action be allowed during a HILTOP iteration sequence (solution of the two-point boundary value problem). It is felt that if this ground rule were not adhered to, i.e., if overlay action occurred during an iteration sequence, the execution-time properties of the HILTOP program would be significantly degraded. (Indeed, it is not certain, at this point, if significant core sayings could be obtained by ignoring this ground rule.)

The following necessary size-saving steps were taken at LeRC:
(1) A sizeable chunk of code associated with ballistic swingby continuation and ballistic trajectory extensjon was dummied-out. This consisted of writing a dummy subroutine MøRE which, if referenced during execution, writes a simple message to the user explaining the non-avai?ability of the attempted program option(s). The dummy MøRE is then used in the overlay structure, and this allows the deletion of subroutines SWING, SWTRAJ, TAPSET, and CØNVER from the overlay tree. It is emphasized that all dummyreplacement operations have not destroyed the associated program

Cross reference list between HILTOP subroutine names and source module names（MFILE）on the UNIVAC system at the Lewis Research Center．

HILTOP	MFILE	Overlay	HILTOP	MFILE	Overlay
Subroutine	Module	Segment	Subroutine	Module	Segment
Name	Name	Name	Name	Name	Name
AEINWT	A	RDQT	gmass	AN	R00T
ALBED \emptyset	ALBEDの	TRAJEC	PARINC	A	LIMBD
ANSTEP	C	RD0T	PDATE	AP	FINAL
BEGIN	D	SBEGIN	PMPINT	$A Q$	RDDT
BHAM	E	TRAJEC	PRINT	AR	Rg0T
CARKEP	F	TRAJEC	PRINTR	AS	ROgT
CDERIV	G	TRAJEC	PRI隹	AT	TRAJEC
CHECK	H	TRAJEC	PUNCH	AU	LIMBD
CONVER	I	absent	QPRINT	AV	SEGQPR
CØNVRT	J	TRAJEC	QSTART	Aw	INITAL
CORNER	DUMCgR／K	R0¢T／absent	RPDAR	AX	Rø¢T
DATE1	L	R＠ロT	RECHEC	AY	TRAJEC
DECLIN	M	TRAJEC	REMTIM	REMTIM	ROgT
DERIV	N	TRAJEC	RETINJ	AZ	TRAJEC
EFM	0	RD¢T	RKSTEP	BA	TRAJEC
EFMPRT	P	FINAL	SCgMp	BB	ROQT
ETA	Q	RODT	SETUP	BC	INITAL
ETAU	R	RDQT	SMQINT	BD	RODT
EXTAB	S	RDOT	SOLAR	BE	RODT
FIND	T	TRAJEC	SPRINT	BF	TRAJEC
FINISH	U	RøDT	STEP	BG	TRAJEC
FUNCT	V	TRAJEC	STDRE	BH	TRAJEC
GETAMP	W	TRAJEC	SUMMRY	DUMSUM／BI	RøロT／absent
GETHAM	X	TRAJEC	SWING	BJ	absent
GETH00	Y	TRAJEC	SHSTD	BK	TRAJEC
GETI	Z	TRAJEC	SWTRAJ	BL	absent
GETQ	AA	TRAJEC	TAP	BM	R00］
GETRV	AB	TRAJEC	TAPSET	BN	absent
GUESS	AC	BALLIS	THANGD	B \emptyset	TRAJEC
GUNTHR	AD	TRAJEC	TIKTDK	BP	RODT
IMPRNT	AE	BALLIS	TIndFT	TIMLFT	RODT
IMPULS	AF	BALLIS	TRAJ	BQ	Rø0T
IMCOND	AG	TRAJEC	TRAJI	BR	TRAJEC
INPUT	AH	INITAL	TRAVEL	BS	TRAJEC
INTERP	AI	TRAJEC	THINKL	BT	INITAL
LOAD	AJ	TRAJEC	VDOT	VDOT	RøロT
MAIN	AK	RФロT	VMAG	VMAG	R90T
MINMX3	AL	RØ¢T	VPRINT	BV	LIMB ${ }^{\text {d }}$
M 9 RE	DUM9RE／AM	FINAL／absent	VSCAL	BL	ROQT
NEWINT	NEWINT	INITAL	WRAPUP	BX	TRAJEC

capabilities. Both the full source and object codes remain available for each subroutitre on the UNIVAC disk pack, but the dummied object code is specified in the overlay tree which is input to the linkage editor program. The absence of the ballistic trajectory extension capabilities from the UNIVAC 1700 version of HILTOP in no way degrades the program's capability to perform electric propulsion performance investigations.
(2) Subroutine CDRNER was dummied-out. This only affects simulations involving the "old" spacecraft model, and only when a trajectory is "hung" on a propulsion-time corner (as explained in the primary HILTOP program document). The program will no longer automatically attempt to avoid this numerical difficulty by varying the propulsion time adjoint variable λ_{τ}, but the user can still do this manually. Or, when simulating the old spacecraft model, the user could use the older version of HILTOP which is currently being maintained on the UNIVAC 1700 at Lewis. Since there is no λ_{τ} in the new model, this change does not degrade the program's capability when simulating the new spacecraft model.
(3) Subroutine SUMHRY was dummied-out. This subroutine prints a very brief (one line per case) summary at the end of each computer run, which can be effectively deleted without degrading any program capabilities. This deletion eliminates some significant storage arrays.
(4) To obtain the capability of receiving full program output in the event of execution time-out, the UNIVAC 1100 sponsored subroutine TIMLFT was added to the program. Also added was subroutine REMTIM, which acts as an interface between the HILTOP code and TIMLFT. The associated program input variable is ITF, which has a default value of 3 (seconds) pertaining to the IBM $360 / 91$, and it may be necessary to increase this value (e.g., ITF $=10$) on the UNIVAC 1100.
(5) Overlay segment LIMBD was created for three subroutines (PARINC, PUNCH, and VPRINT) associated with program options which are rarely exercised. These options, which are then effectively dummiedout on the UNIVAC 1100, are described in the HILTOP progran report by the Namelist inputs (respectiveTy) KPART, MPUNCH and ALTITU. Suppression of these options does not degrade the program's basic electric propulsion mission analysis capability. Attempt to use any of these options on the UNIVAC could cause an abrupt execution halt due to an invalid overlay occurrence.

The card images representing the HILTOP overlay tree on the UNIVAC 1100 are displayed on the next page.

```
SEG RODT
IN MFILE.A,.C,.DUMCOR,.L,.\emptyset,.Q,.R,.S,.U,.AK,.AL,.AN
IN MFILE.AQ, AR,.AS,.AX,.REMTIM,.BB,.SD,.BE,.DUMSUM,.BM
IN MFILE,BP,.TIMLFT,.BQ,.VDGT,.VMAG,.BW
SEG SEGQPR*, (RGDT)
IN MFILE AV
SIG INITAL*, (SEGQPR)
IN MFILE.AH, NEWINT,.AW,.BC,.BT
SEG FINAL*, (SEGQPR)
IN MFILE.P,.DUMORE,AP
SEG BALLIS**, (SEGQPR)
IN MFILE.AC,.AE,.AF
SEG TRAJEC*, (ROGT)
IN MFILE.ALBEDИ,.E,.F,.G,.H,.J,.M,.N,.T,.V,.W,.X,.Y,.Z
IN MFILE,AA, AB,.AD,.AG,.AI,.AJ,.AT,.AY,.AZ,.BA,.BF,.BG,.BH
IN MFILE.BK,.B\emptyset,.BR,.BS,.BX
SEG SBEGIN*, (RODT)
IN MFILE.D
```



```
IN MFILE.AD,.AU,.BV
```


6.0 REFERENCES

[1] F.I. Mann and J.L. norsewood, "Program Manual for HILTOP, A deliocentric Interplanetary Low Thrust Trajectory Optimization Program:" Analytical Mechanics Associates, Inc., Report No. 74-34, December 1974.

Part I - User's Guide (287 pages)
Part II - Subroutine Descriptions (854 pages)
[2] Private Communications, Mr. Phillip A. Masters, NASA Lewis Research Center, Cleveland, Ohio, May 1977 through February 1978.

APPENDIX A

HILTOP FORMULATION

Electric Propulsion System Power Flow Schematic

Selection of Optimal Voltage and Number of Thrustres at any Polat In Time

[^0]: * A power flow schematic is displayed in Appendix A.

[^1]: *This is depicted in Appendix B.

[^2]: *Year-value indicates apparition for which internal orbital elements are most accurate.
 **Input corresponding orbit elements (see CNI, CNIX). None are available for the launch planet.

