30 research outputs found

    Attachment of composite porous supra-particles to air–water and oil–water interfaces: theory and experiment

    Get PDF
    We developed and tested a theoretical model for the attachment of fluid-infused porous supra-particles to a fluid–liquid interface. We considered the wetting behaviour of agglomerated clusters of particles, typical of powdered materials dispersed in a liquid, as well as of the adsorption of liquid-infused colloidosomes at the liquid–fluid interface. The free energy of attachment of a composite spherical porous supra-particle made from much smaller aggregated spherical particles to the oil–water interface was calculated. Two cases were considered: (i) a water-filled porous supra-particle adsorbed at the oil–water interface from the water phase, and, (ii) an oil-filled porous supra-particle adsorbed at the oil–water interface from the oil-phase. We derived equations relating the three-phase contact angle of the smaller “building block” particles and the contact angle of the liquid-infused porous supra-particles. The theory predicts that the porous supra-particle contact angle attached at the liquid interface strongly depends on the type of fluid infused in the particle pores and the fluid phase from which it approaches the liquid interface. We tested the theory by using millimetre-sized porous supra-particles fabricated by evaporation of droplets of polystyrene latex suspension on a pre-heated super-hydrophobic surface, followed by thermal annealing at the glass transition temperature. Such porous particles were initially infused with water or oil and approached to the oil–water interface from the infusing phase. The experiment showed that when attaching at the hexadecane–water interface, the porous supra-particles behaved as hydrophilic when they were pre-filled with water and hydrophobic when they were pre-filled with hexadecane. The results agree with the theoretically predicted contact angles for the porous composite supra-particles based on the values of the contact angles of their building block latex particles measured with the Gel Trapping Technique. The experimental data for the attachment of porous supra particles to the air–water interface from both air and water also agree with the theoretical model. This study gives important insights about how porous particles and particle aggregates attach to the oil–water interface in Pickering emulsions and the air–water surface in particle-stabilised aqueous foams relevant in ore flotation and a range of cosmetic, pharmaceutical, food, home and personal care formulations

    Preparation and attachment of liquid-infused porous supra-particles to liquid interfaces

    Get PDF
    © 2016 The Royal Society of Chemistry. We prepared model porous composite supra-particles and investigated the effect of the initial infused fluid phase on their attachment at the liquid-fluid interface. We used a simple method for fabrication of millimetre-sized spherical porous supra-particles from much smaller monodisperse latex microparticles as building blocks by evaporation of a polystyrene sulphate latex suspension on a hot super-hydrophobic surface. We annealed the dried supra-particles at the polymer's glass transition temperature to fuse partially their latex particle building blocks. Spherical porous supra-particles were produced above 40 wt% initial concentration of the latex particles in the suspension, which had a rough surface, with a porous and amorphous structure. We controlled the supra-particle size by varying the initial volume of the latex suspension drop, the latex particle concentration and the drop evaporation temperature. This preparation technique allowed limited control over the porosity of the supra-particles by varying the initial concentration of the latex particle suspension, the rate of evaporation and the annealing temperature. We characterised the surface morphology and the inner structure of supra-particles by SEM imaging. We report for the first time results of an MRI study of supra-particles attached to an air-water or an oil-water interface, which indicated that only the surface layer of the building block particles attaches to the liquid interface while the pore fluid was not displaced by the outer fluid. We observed that supra-particles infused with water had different wettability and attachment positions at the oil-water interface compared with the same particles infused with oil. Similarly, the infusion of the porous supra-particles with water led to a different attachment at the air-water interface compared to the attachment of the same supra-particle when dry. The fundamental importance of this result is that the porous particles (or colloid particle agglomerates) may give an oil-in-water or water-in-oil Pickering emulsion depending on whether they are initially impregnated with oil or water. The results of this study are relevant for particle-stabilised emulsions and foams in a range of pharmaceutical, food and cosmetic formulations as well as ore flotation

    Adsorption of carboxylic modified latex particles at liquid interfaces studied by the gel trapping technique

    Get PDF
    We have studied how carboxylic modified latex (CML) microparticles adsorb at liquid surfaces and the preferred type of emulsion they can stabilise depending on the particle size and the surface density of carboxylic groups. We measured the particle contact angle by using the gel trapping technique (GTT) for CML particles adsorbed at air–water and oil–water interfaces. Using this method we obtained scanning electron microscopy (SEM) micrographs of polydimethylsiloxane (PDMS) replicas of the liquid interface with the particles, where the PDMS replicates the non-polar phase and measured the particle contact angle. We discovered that the particle wettability correlates well with the surface density of the carboxylic groups but is not very sensitive to the presence of electrolyte in the aqueous phase and the value of the particle zeta potential. We demonstrated that CML microparticles with a high surface density of COOH groups stabilise oil-in-water (O/W) emulsions while those with the lowest coverage of COOH groups favour the formation of water-in-oil (W/O) emulsions. We found that this corresponds to a change of the CML particle contact angle from lower than 90° to higher than 90° upon decrease of the surface density of COOH groups. The findings confirm that the surface density of polar groups has a much bigger effect on the particle wettability and the preferred emulsion than the particle surface charge and zeta potential. Our results on the type of stabilised Pickering emulsion agree with other experimental studies with different particle materials. We propose an alternative explanation for the link between the particle contact angle and the type of stabilised Pickering emulsion

    Adsorption of shape-anisotropic and porous particles at the air–water and the decane–water interface studied by the gel trapping technique

    No full text
    We have studied the attachment and orientation of anisotropic and porous microparticles at liquid surfaces by using the gel trapping technique (GTT). This technique involves spreading of the microparticles of interest at the liquid interface, subsequent setting of the aqueous phase to a hydrogel thus "arresting" the particle positions at the liquid surface, and further replication of the hydrogel surface with curable polydymethilsiloxane (PDMS). The advantage of the GTT comes from the possibility to look at the PDMS replica with scanning electron microscopy (SEM) or atomic force microscopy (AFM), which allows even sub-micrometer particles to be studied at the air-water and the oil-water interface. Here we report our results on the adsorption of non-spherical anisotropic particles at liquid surfaces using the GTT. Although the GTT was originally designed to measure three-phase contact angles of spherical colloid particles, here we used this technique to reveal the orientation of a variety of shape-anisotropic and porous microparticles of practical interest at both the air-water and decane-water interfaces. We show results on typical attachment and orientation of needle-like (aragonite), rhombohedra-like (calcite) microcrystals, ethyl cellulose micro-rods, as well as highly porous hydrophilic and hydrophobic silica microparticles at these liquid interfaces. The results are important for understanding the adsorption behaviour of shape-anisotropic particles as well as porous microparticles which are used in industrial formulations as fillers, foam stabilisers and emulsifiers. © 2014 The Royal Society of Chemistry

    An ultra melt-resistant hydrogel from food grade carbohydrates

    Get PDF
    © 2017 The Royal Society of Chemistry. We report a binary hydrogel system made from two food grade biopolymers, agar and methylcellulose (agar-MC), which does not require addition of salt for gelation to occur and has very unusual rheological and thermal properties. It is found that the storage modulus of the agar-MC hydrogel far exceeds those of hydrogels from the individual components. In addition, the agar-MC hydrogel has enhanced mechanical properties over the temperature range 25-85 °C and a maximum storage modulus at 55 °C when the concentration of methylcellulose was 0.75% w/v or higher. This is explained by a sol-gel phase transition of the methylcellulose upon heating as supported by differential scanning calorimetry (DSC) measurements. Above the melting point of agar, the storage modulus of agar-MC hydrogel decreases but is still an elastic hydrogel with mechanical properties dominated by the MC gelation. By varying the mixing ratio of the two polymers, agar and MC, it was possible to engineer a food grade hydrogel of controlled mechanical properties and thermal response. SEM imaging of flash-frozen and freeze-dried samples revealed that the agar-MC hydrogel contains two different types of heterogeneous regions of distinct microstructures. The latter was also tested for its stability towards heat treatment which showed that upon heating to temperatures above 120 °C its structure was retained without melting. The produced highly thermally stable hydrogel shows melt resistance which may find application in high temperature food processing and materials templating

    "Ghost" silica nanoparticles of "host"-inherited antibacterial action

    Get PDF
    Copyright © 2019 American Chemical Society. We fabricated surface-rough mesoporous silica nanoparticles ("ghost" SiO2NPs) by using composite mesoporous copper oxide nanoparticles ("host" CuONPs) as templates, which allowed us to mimic their surface morphology. The "host" CuONPs used here as templates, however, had a very high antibacterial effect, with or without functionalization. To evaluate the surface roughness effect on the "ghost" SiO2NPs antibacterial action, we functionalized them with (3-glycidyloxypropyl)trimethoxysilane (GLYMO) to permit additional covalent coupling of 4-hydroxyphenylboronic acid (4-HPBA). The diol groups on the bacterial membrane can form reversible covalent bonds with boronic acid (BA) groups on the "ghost" SiO2NPs surface and bind to the bacteria, resulting in a very strong amplification of their antibacterial activity, which does not depend on electrostatic adhesion. The BA-functionalized "ghost" SiO2NPs showed a very significant antibacterial effect as compared to smooth SiO2NPs of the same surface coating and particle size. We attribute this to the "ghost" SiO2NPs mesoporous surface morphology, which mimics to a certain extent those of the original mesoporous CuONPs used as templates for their preparation. We envisage that the "ghost" SiO2NPs effectively acquire some of the antibacterial properties from the "host" CuONPs, with the same functionality, despite being completely free of copper. The antibacterial effect of the functionalized "ghost" SiO2NPs/GLYMO/4-HPBA on Rhodococcus rhodochrous (R. rhodochrous) and Escherichia coli (E. coli) is much higher than that of the nonfunctionalized "ghost" SiO2NPs or the "ghost" SiO2NPs/GLYMO. The results indicate that the combination of rough surface morphology and strong adhesion of the particle surface to the bacteria can make even benign material such as silica act as a strong antimicrobial agent. Additionally, our BA-functionalized nanoparticles ("ghost" SiO2NPs/GLYMO/4-HPBA) showed no detectable cytotoxic impact against human keratinocytes at particle concentrations, which are effective against bacteria.

    Strongly Enhanced Antibacterial Action of Copper Oxide Nanoparticles with Boronic Acid Surface Functionality

    Get PDF
    Copper oxide nanoparticles (CuONPs) have been widely recognized as good antimicrobial agents but are heavily regulated due to environmental concerns of their postuse. In this work, we have developed and tested a novel type of formulation for copper oxide (CuONPs) which have been functionalized with (3-glycidyloxypropyl)trimethoxysilane (GLYMO) to allow further covalent coupling of 4-hydroxyphenylboronic acid (4-HPBA). As the boronic acid (BA) groups on the surface of CuONPs/GLYMO/4-HPBA can form reversible covalent bonds with the diol groups of glycoproteins on the bacterial cell surface, they can strongly bind to the cells walls resulting in a very strong enhancement of their antibacterial action which is not based on electrostatic adhesion. Scanning electron microscopy and transmission electron microscopy imaging revealed that 4-HPBA-functionalized CuO nanoparticles could accumulate more on the cell surface than nonfunctionalized ones. We demonstrate that the CuONPs with boronic acid surface functionality are far superior antibacterial agents compared to bare CuONPs. Our results showed that the antibacterial impact of the 4-HPBA-functionalized CuONPs on Rhodococcus rhodochrous and Escherichia coli is 1 order of magnitude higher than that of bare CuONPs or CuONPs/GLYMO. We also observed a marked increase of the 4-HPBA-functionalized CuONPs antibacterial action on these microorganisms at shorter incubation times compared with the bare CuONPs at the same conditions. Significantly, we show that the cytotoxicity of CuONPs functionalized with 4-HPBA as an outer layer can be controlled by the concentration of glucose in the media, and that the effect is reversible as glucose competes with the sugar residues on the bacterial cell walls for the BA-groups on the CuONPs. Our experiments with human keratinocyte cell line exposure to CuONPs/GLYMO/4-HPBA indicated lack of measurable cytotoxicity at particle concentration which are effective as an antibacterial agent for both R. rhodochrous and E. coli. We envisage that formulations of CuONPs/GLYMO/4-HPBA can be used to drastically reduce the overall CuO concentration in antimicrobial formulations while strongly increasing their efficiency

    Colloid particle formulations for antimicrobial applications

    Get PDF
    Colloidal particles are being extensively studied in various antimicrobial applications due to their small size to volume ratio and ability to exhibit a wide spectrum of antibacterial, antifungal, antialgal and antiviral action. The present review focuses on various nanoparticles (NPs) of inorganic, organic and hybrid materials, and discusses some of the methods for their preparation as well as mechanisms of their antimicrobial action. We consider the antimicrobial applications of metal oxide nanoparticles (ZnO, MgO, CuO, Cu2O, Al2O3, TiO2, CeO2 and Y2O3), metal nanoparticles (NPs), such as copper, silver and gold, metal hydroxide NPs such as Mg(OH)2 as well as hybrid NPs made from biodegradable materials, such as chitosan, lignin and dextran, loaded with other antimicrobial agents. Recent developments for targeted delivery of antimicrobials by using colloid antibodies for microbial cell shape and surface recognition are also discussed. We also consider recent advances in the functionalization of nanoparticles and their potential antimicrobial applications as a viable alternative of conventional antibiotics and antiseptic agents which can help to tackle antimicrobial resistance. The review also covers the recently developed environmentally benign NPs (EbNPs) as a “safer-by-design” green chemistry solution of the post use fate of antimicrobial nanomaterials

    Controlling the antimicrobial action of surface modified magnesium hydroxide nanoparticles

    Get PDF
    Magnesium hydroxide nanoparticles (Mg(OH)2NPs) have recently attracted significant attention due to their wide applications as environmentally friendly antimicrobial nanomaterials, with potentially low toxicity and low fabrication cost. Here, we describe the synthesis and characterisation of a range of surface modified Mg(OH)2NPs, including particle size distribution, crystallite size, zeta potential, isoelectric point, X-ray diffraction (XRD), dynamic light scattering (DLS), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), energy dispersive X-ray analysis (EDX), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). We explored the antimicrobial activity of the modified Mg(OH)2NPs on the microalgae (C. reinhardtii), yeast (S. cerevisiae) and Escherichia coli (E. coli). The viability of these cells was evaluated for various concentrations and exposure times with Mg(OH)2NPs. It was discovered that the antimicrobial activity of the uncoated Mg(OH)2NPs on the viability of C. reinhardtii occurred at considerably lower particle concentrations than for S. cerevisiae and E. coli. Our results indicate that the antimicrobial activity of polyelectrolyte-coated Mg(OH)2NPs alternates with their surface charge. The anionic nanoparticles (Mg(OH)2NPs/PSS) have much lower antibacterial activity than the cationic ones (Mg(OH)2NPs/PSS/PAH and uncoated Mg(OH)2NPs). These findings could be explained by the lower adhesion of the Mg(OH)2NPs/PSS to the cell wall, because of electrostatic repulsion and the enhanced particle-cell adhesion due to electrostatic attraction in the case of cationic Mg(OH)2NPs. The results can be potentially applied to control the cytotoxicity and the antimicrobial activity of other inorganic nanoparticles

    Hierarchically porous composites fabricated by hydrogel templating and viscous trapping techniques

    Get PDF
    © 2017 Elsevier Ltd Two methods for the preparation of hierarchically porous composites have been developed and explored. The first involved templating mixed slurries of hydrogel beads with two different average bead size distributions with gypsum slurry which allows for precise control over the porosity, pore size distributions and hierarchical microstructure of the hardened composite after the evaporation of the water from the hydrogel beads. The other technique utilised the viscosity of methylcellulose solution to suspend gypsum particles as they form an interlocked network. By varying the volume percentage of methylcellulose solution used, it is possible to control the porosity of the dried sample. The mechanical and thermal insulation properties of the composites as a function of both their porosity and pore size were investigated. Both methods demonstrate an inexpensive approach for introducing porosity in gypsum composites which reduces their thermal conductivity, improves their insulation properties and allows economic use of the matrix material whilst controlling their mechanical properties. Such composites allow for tuneable porosity without significantly compromising their strength which could find applications in the building industry as well as structuring of other composites for a variety of consumer products
    corecore