81 research outputs found
Colloid-stabilized emulsions: behaviour as the interfacial tension is reduced
We present confocal microscopy studies of novel particle-stabilized
emulsions. The novelty arises because the immiscible fluids have an accessible
upper critical solution temperature. The emulsions have been created by
beginning with particles dispersed in the single-fluid phase. On cooling,
regions of the minority phase nucleate. While coarsening these nuclei become
coated with particles due to the associated reduction in interfacial energy.
The resulting emulsion is arrested, and the particle-coated interfaces have
intriguing properties. Having made use of the binary-fluid phase diagram to
create the emulsion we then make use of it to study the properties of the
interfaces. As the emulsion is re-heated toward the single-fluid phase the
interfacial tension falls and the volume of the dispersed phase drops.
Crumpling, fracture or coalescence can follow. The results show that the
elasticity of the interfaces has a controlling influence over the emulsion
behaviour.Comment: Submitted for the proceedings of the 6th Liquid Matter Conference,
held in Utrecht (NL) in July 200
Density functional theory for the crystallization of two-dimensional dipolar colloidal alloys
Two-dimensional mixtures of dipolar colloidal particles with different dipole moments exhibit extremely rich self-assembly behaviour and are relevant to a wide range of experimental systems, including charged and super-paramagnetic colloids at liquid interfaces. However, there is a gap in our understanding of the crystallization of these systems because existing theories such as integral equation theory and lattice sum methods can only be used to study the high temperature fluid phase and the zero-temperature crystal phase, respectively. In this paper we bridge this gap by developing a density functional theory (DFT), valid at intermediate temperatures, in order to study the crystallization of one and two-component dipolar colloidal monolayers. The theory employs a series expansion of the excess Helmholtz free energy functional, truncated at second order in the density, and taking as input highly accurate bulk fluid direct correlation functions from simulation. Although truncating the free energy at second order means that we cannot determine the freezing point accurately, our approach allows us to calculate \emph{ab initio} both the density profiles of the different species and the symmetry of the final crystal structures. Our DFT predicts hexagonal crystal structures for one-component systems, and a variety of superlattice structures for two-component systems, including those with hexagonal and square symmetry, in excellent agreement with known results for these systems. The theory also provides new insights into the structure of two-component systems in the intermediate temperature regime where the small particles remain molten but the large particles are frozen on a regular lattice
Adsorption trajectories of nonspherical particles at liquid interfaces
The adsorption of colloidal particles at liquid interfaces is of great importance scientifically and industrially, but the dynamics of the adsorption process is still poorly understood. In this paper we use a Langevin model to study the adsorption dynamics of ellipsoidal colloids at a liquid interface. Interfacial deformations are included by coupling our Langevin dynamics to a finite element model while transient contact line pinning due to nanoscale defects on the particle surface is encoded into our model by renormalizing particle friction coefficients and using dynamic contact angles relevant to the adsorption timescale. Our simple model reproduces the monotonic variation of particle orientation with time that is observed experimentally and is also able to quantitatively model the adsorption dynamics for some experimental ellipsoidal systems but not others. However, even for the latter case, our model accurately captures the adsorption trajectory (i.e., particle orientation versus height) of the particles. Our study clarifies the subtle interplay between capillary, viscous, and contact line forces in determining the wetting dynamics of micron-scale objects, allowing us to design more efficient assembly processes for complex particles at liquid interfaces
Using adsorption kinetics to assemble vertically aligned nanorods at liquid interfaces for metamaterial applications
Vertically aligned monolayers of metallic nanorods have a wide range of applications as metamaterials or in surface enhanced Raman spectroscopy. However the fabrication of such structures using current top-down methods or through assembly on solid substrates is either difficult to scale up or have limited possibilities for further modification after assembly. The aim of this paper is to use the adsorption kinetics of cylindrical nanorods at a liquid interface as a novel route for assembling vertically aligned nanorod arrays that overcomes these problems. Specifically, we model the adsorption kinetics of the particle using Langevin dynamics coupled to a finite element model, accurately capturing the deformation of the liquid meniscus and particle friction coefficients during adsorption. We find that the final orientation of the cylindrical nanorod is determined by their initial attack angle when they contact the liquid interface, and that the range of attack angles leading to the end-on state is maximised when nanorods approach the liquid interface from the bulk phase that is more energetically favorable. In the absence of an external field, only a fraction of adsorbing nanorods end up in the end-on state (<=40% even for nanorods approaching from the energetically favourable phase). However, by pre-aligning the metallic nanorods with experimentally achievable electric fields, this fraction can be effectively increased to 100%. Using nanophotonic calculations, we also demonstrate that the resultant vertically aligned structures can be used as epsilon-near-zero and hyperbolic metamaterials. Our kinetic assembly method is applicable to nanorods with a range of diameters, aspect ratios and materials and therefore represents a versatile, low-cost and powerful platform for fabricating vertically aligned nanorods for metamaterial applications
The structure and melting transition of two-dimensional colloidal alloys
We study theoretically the structure and melting transition of two-dimensional (2D) binary mixtures of colloidal particles interacting via a dipole-dipole potential. Using a lattice sum method, we find that at zero temperature (T = 0) the system forms a rich variety of stable crystalline phases whose structure depends on the composition and dipole moment ratio. Using Monte Carlo (MC) simulations, we also find that the melting temperature of the different T = 0 structures is a very strong and non-monotonic function of composition. For example, from a direct analysis of the radial distribution function vs.temperature, we find that the melting temperature of hexagonal AB 2 and AB 6 phases is three orders of magnitude higher than that of hexagonal AB 5 . Finally the melting transition for our binary colloidal system is found to proceed via at least two stages for hexagonal AB 2 and AB 6 and at least three stages for hexagonal AB 5 and is thus much richer compared to the melting transition of 2D one component colloidal systems. © 2011 The Royal Society of Chemistry
Adsorption of sterically stabilized latex particles at liquid surfaces: Effects of steric stabilizer surface coverage, particle size, and chain length on particle wettability
A series of five near-monodisperse sterically stabilized polystyrene (PS) latexes were synthesized using three well-defined poly(glycerol monomethacrylate) (PGMA) macromonomers with mean degrees of polymerization (DP) of 30, 50, or 70. The surface coverage and grafting density of the PGMA chains on the particle surface were determined using XPS and 1H NMR spectroscopy, respectively. The wettability of individual latex particles adsorbed at the air-water and n-dodecane-water interfaces was studied using both the gel trapping technique and the film calliper method. The particle equilibrium contact angle at both interfaces is relatively insensitive to the mean DP of the PGMA stabilizer chains. For a fixed stabilizer DP of 30, particle contact angles were only weakly dependent on the particle size. The results are consistent with a model of compact hydrated layers of PGMA stabilizer chains at the particle surface over a wide range of grafting densities. Our approach could be utilized for studying the adsorption behavior of a broader range of sterically stabilized inorganic and polymeric particles of practical importance
- …