We present confocal microscopy studies of novel particle-stabilized
emulsions. The novelty arises because the immiscible fluids have an accessible
upper critical solution temperature. The emulsions have been created by
beginning with particles dispersed in the single-fluid phase. On cooling,
regions of the minority phase nucleate. While coarsening these nuclei become
coated with particles due to the associated reduction in interfacial energy.
The resulting emulsion is arrested, and the particle-coated interfaces have
intriguing properties. Having made use of the binary-fluid phase diagram to
create the emulsion we then make use of it to study the properties of the
interfaces. As the emulsion is re-heated toward the single-fluid phase the
interfacial tension falls and the volume of the dispersed phase drops.
Crumpling, fracture or coalescence can follow. The results show that the
elasticity of the interfaces has a controlling influence over the emulsion
behaviour.Comment: Submitted for the proceedings of the 6th Liquid Matter Conference,
held in Utrecht (NL) in July 200