355 research outputs found

    Holographic Metamagnetism, Quantum Criticality, and Crossover Behavior

    Full text link
    Using high-precision numerical analysis, we show that 3+1 dimensional gauge theories holographically dual to 4+1 dimensional Einstein-Maxwell-Chern-Simons theory undergo a quantum phase transition in the presence of a finite charge density and magnetic field. The quantum critical theory has dynamical scaling exponent z=3, and is reached by tuning a relevant operator of scaling dimension 2. For magnetic field B above the critical value B_c, the system behaves as a Fermi liquid. As the magnetic field approaches B_c from the high field side, the specific heat coefficient diverges as 1/(B-B_c), and non-Fermi liquid behavior sets in. For B<B_c the entropy density s becomes non-vanishing at zero temperature, and scales according to s \sim \sqrt{B_c - B}. At B=B_c, and for small non-zero temperature T, a new scaling law sets in for which s\sim T^{1/3}. Throughout a small region surrounding the quantum critical point, the ratio s/T^{1/3} is given by a universal scaling function which depends only on the ratio (B-B_c)/T^{2/3}. The quantum phase transition involves non-analytic behavior of the specific heat and magnetization but no change of symmetry. Above the critical field, our numerical results are consistent with those predicted by the Hertz/Millis theory applied to metamagnetic quantum phase transitions, which also describe non-analytic changes in magnetization without change of symmetry. Such transitions have been the subject of much experimental investigation recently, especially in the compound Sr_3 Ru_2 O_7, and we comment on the connections.Comment: 23 pages, 8 figures v2: added ref

    Domain Wall Holography for Finite Temperature Scaling Solutions

    Get PDF
    We investigate a class of near-extremal solutions of Einstein-Maxwell-scalar theory with electric charge and power law scaling, dual to charged IR phases of relativistic field theories at low temperature. These are exact solutions of theories with domain wall vacua; hence, we use nonconformal holography to relate the bulk and boundary theories. We numerically construct a global interpolating solution between the IR charged solutions and the UV domain wall vacua for arbitrary physical choices of Lagrangian parameters. By passing to a conformal frame in which the domain wall metric becomes that of AdS, we uncover a generalized scale invariance of the IR scaling solution, indicating a connection to the physics of Lifshitz fixed points. Finally, guided by effective field theoretic principles and the physics of nonconformal D-branes, we argue for the applicability of domain wall holography even in theories with AdS critical points, namely those theories for which a scalar potential is dominated by a single exponential term over a large range

    The entropy of black holes: a primer

    Full text link
    After recalling the definition of black holes, and reviewing their energetics and their classical thermodynamics, one expounds the conjecture of Bekenstein, attributing an entropy to black holes, and the calculation by Hawking of the semi-classical radiation spectrum of a black hole, involving a thermal (Planckian) factor. One then discusses the attempts to interpret the black-hole entropy as the logarithm of the number of quantum micro-states of a macroscopic black hole, with particular emphasis on results obtained within string theory. After mentioning the (technically cleaner, but conceptually more intricate) case of supersymmetric (BPS) black holes and the corresponding counting of the degeneracy of Dirichlet-brane systems, one discusses in some detail the ``correspondence'' between massive string states and non-supersymmetric Schwarzschild black holes.Comment: 51 pages, 4 figures, talk given at the "Poincare seminar" (Paris, 6 December 2003), to appear in Poincare Seminar 2003 (Birkhauser

    10 simple rules to create a serious game, illustrated with examples from structural biology

    Full text link
    Serious scientific games are games whose purpose is not only fun. In the field of science, the serious goals include crucial activities for scientists: outreach, teaching and research. The number of serious games is increasing rapidly, in particular citizen science games, games that allow people to produce and/or analyze scientific data. Interestingly, it is possible to build a set of rules providing a guideline to create or improve serious games. We present arguments gathered from our own experience ( Phylo , DocMolecules , HiRE-RNA contest and Pangu) as well as examples from the growing literature on scientific serious games

    Early-Time Energy Loss in a Strongly-Coupled SYM Plasma

    Full text link
    We carry out an analytic study of the early-time motion of a quark in a strongly-coupled maximally-supersymmetric Yang-Mills plasma, using the AdS/CFT correspondence. Our approach extracts the first thermal effects as a small perturbation of the known quark dynamics in vacuum, using a double expansion that is valid for early times and for (moderately) ultrarelativistic quark velocities. The quark is found to lose energy at a rate that differs significantly from the previously derived stationary/late-time result: it scales like T^4 instead of T^2, and is associated with a friction coefficient that is not independent of the quark momentum. Under conditions representative of the quark-gluon plasma as obtained at RHIC, the early energy loss rate is a few times smaller than its late-time counterpart. Our analysis additionally leads to thermally-corrected expressions for the intrinsic energy and momentum of the quark, in which the previously discovered limiting velocity of the quark is found to appear naturally.Comment: 39 pages, no figures. v2: Minor corrections and clarifications. References added. Version to be published in JHE

    Non-Supersymmetric String Theory

    Full text link
    A class of non-supersymmetric string backgrounds can be constructed using twists that involve space-time fermion parity. We propose a non-perturbative definition of string theory in these backgrounds via gauge theories with supersymmetry softly broken by twisted boundary conditions. The perturbative string spectrum is reproduced, and qualitative effects of the interactions are discussed. Along the way, we find an interesting mechanism for inflation. The end state of closed string tachyon condensation is a highly excited state in the gauge theory which, in all likelihood, does not have a geometric interpretation.Comment: 35 pages, 2 figures; revision adds a computation of the relevant orbifold state

    Aspects of holography for theories with hyperscaling violation

    Get PDF
    We analyze various aspects of the recently proposed holographic theories with general dynamical critical exponent z and hyperscaling violation exponent ξ\theta. We first find the basic constraints on z,ξz, \theta from the gravity side, and compute the stress-energy tensor expectation values and scalar two-point functions. Massive correlators exhibit a nontrivial exponential behavior at long distances, controlled by ξ\theta. At short distance, the two-point functions become power-law, with a universal form for ξ>0\theta > 0. Next, the calculation of the holographic entanglement entropy reveals the existence of novel phases which violate the area law. The entropy in these phases has a behavior that interpolates between that of a Fermi surface and that exhibited by systems with extensive entanglement entropy. Finally, we describe microscopic embeddings of some ξ≠0\theta \neq 0 metrics into full string theory models -- these metrics characterize large regions of the parameter space of Dp-brane metrics for p≠3p\neq 3. For instance, the theory of N D2-branes in IIA supergravity has z=1 and ξ=−1/3\theta = -1/3 over a wide range of scales, at large gsNg_s N.Comment: 35 pages; v2: new references added; v3: proper reference [14] added; v4: minor clarification

    On the Beaming of Gluonic Fields at Strong Coupling

    Full text link
    We examine the conditions for beaming of the gluonic field sourced by a heavy quark in strongly-coupled conformal field theories, using the AdS/CFT correspondence. Previous works have found that, contrary to naive expectations, it is possible to set up collimated beams of gluonic radiation despite the strong coupling. We show that, on the gravity side of the correspondence, this follows directly (for arbitrary quark motion, and independently of any approximations) from the fact that the string dual to the quark remains unexpectedly close to the AdS boundary whenever the quark moves ultra-relativistically. We also work out the validity conditions for a related approximation scheme that proposed to explain the beaming effect though the formation of shock waves in the bulk fields emitted by the string. We find that these conditions are fulfilled in the case of ultra-relativistic uniform circular motion that motivated the proposal, but unfortunately do not hold for much more general quark trajectories.Comment: 1+33 pages, 2 figure

    Towards strange metallic holography

    Get PDF
    We initiate a holographic model building approach to `strange metallic' phenomenology. Our model couples a neutral Lifshitz-invariant quantum critical theory, dual to a bulk gravitational background, to a finite density of gapped probe charge carriers, dually described by D-branes. In the physical regime of temperature much lower than the charge density and gap, we exhibit anomalous scalings of the temperature and frequency dependent conductivity. Choosing the dynamical critical exponent zz appropriately we can match the non-Fermi liquid scalings, such as linear resistivity, observed in strange metal regimes. As part of our investigation we outline three distinct string theory realizations of Lifshitz geometries: from F theory, from polarised branes, and from a gravitating charged Fermi gas. We also identify general features of renormalisation group flow in Lifshitz theories, such as the appearance of relevant charge-charge interactions when z≄2z \geq 2. We outline a program to extend this model building approach to other anomalous observables of interest such as the Hall conductivity.Comment: 71 pages, 8 figure
    • 

    corecore