1,275 research outputs found
Using a rate-distortion curve to determine an ideal maximum video bit rate
The target bit rate for a video that is to be transported across a network to a receiver is typically determined by the maximum throughput of the network. Such an approach is incognizant of the statistical properties of the video source and can result in inefficient use of bandwidth and/or compute resources. This disclosure describes techniques, based on the rate-distortion curve of the video source and encoder, to determine an ideal maximum bit rate for a video encoder, e.g., a bit rate that produces excellent video quality without undue load on network or compute resources. The techniques automatically adapt to and account for statistical parameters of the video source such as spatial resolution, frame rate, source complexity, etc. The techniques are applicable to a wide variety of video encoder types
The therapeutic potential of a venomous lizard: the use of glucagon-like peptide-1 analogues in the critically ill
Glucagon-like peptide-1 (GLP-1), a principal mediator of the postprandial insulinotropic response in health, has a half-life of minutes. The saliva of the Gila monster contains exendin-4, a structural analogue of human GLP-1, but with a much longer half-life. A synthetic preparation of exendin-4, exenatide, is suitable for human use and effectively lowers glucose in ambulant type 2 diabetic patients. When compared with insulin, exenatide therapy is associated with a reduction in hypoglycaemic episodes and postprandial glycaemic excursions in this group. Accordingly, GLP-1 analogues are appealing therapies for hyperglycaemia in the critically ill patient and warrant further study
210Po and 210Pb distributions during a phytoplankton bloom in the North Atlantic: Implications for POC export
© The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Horowitz, E. J., Cochran, J. K., Bacon, M. P., & Hirschberg, D. J. 210Po and 210Pb distributions during a phytoplankton bloom in the North Atlantic: implications for POC export. Deep-Sea Research Part I: Oceanographic Research Papers, 164, (2020): 103339, doi:10.1016/j.dsr.2020.103339.During the North Atlantic Bloom Experiment (NABE) of the Joint Global Ocean Flux Study (JGOFS), water column sampling for particulate and dissolved 210Po and 210Pb was performed four times (26 April and 4, 20, 30 May 1989) during a month-long Lagrangian time-series occupation of the NABE site, as well as one-time samplings at stations during transit to and from the site. There are few prior studies documenting short-term changes in 210Po and 210Pb profiles over the course of a phytoplankton bloom, and we interpret the profiles in terms of the classical âsteady-stateâ (SS) approach used in most studies, as well as by using a non-steady state approach suggested by the temporal evolution of the profiles. Changes in 210Po profiles during a bloom are expectable as this radionuclide is scavenged and exported. During NABE, 210Pb profiles also displayed non-steady state, with significant increases in upper water column inventory occurring midway through the experiment. Export of 210Po from the upper 150 m using the classic âsteady-stateâ model shows increases from 0.5 ± 8.5 dpm mâ2 dâ1 to 68.2 ± 4.2 dpm mâ2 dâ1 over the ~one-month occupation. Application of a non-steady state model, including changes in both 210Pb and 210Po profiles, gives higher 210Po export fluxes. Detailed depth profiles of particulate organic carbon (>0.8 ÎŒm) and particulate 210Po (>0.4 ÎŒm) are available from the 20 and 30 May samplings and show maxima in POC/Po at ~37 m. Applying the POC/210Po ratios at 150 m to the âsteady stateâ 210Po fluxes yields POC export from the upper 150 m of 8.2 ± 1.5 mmol C mâ 2 dâ1 on 20 May and 6.0 ± 1.6 mmol C mâ2 dâ1 on 30 May. The non-steady state model applied to the interval 20 to 30 May yields POC export of 24.3 mmol C mâ2 dâ1. The non-steady state (NSS) 210Po-derived POC fluxes are comparable to, but somewhat less than, those estimated previously from 234Th/238U disequilibrium for the same time interval (37.3 and 45.0 mmol mâ2 dâ1, depending on the POC/Th ratio used). In comparison, POC fluxes measured with a floating sediment trap deployed at 150 m from 20 to 30 May were 11.6 mmol mâ2 dâ1. These results suggest that non-steady state Po-derived POC fluxes during the NABE agree well with those derived from 234Th/238U disequilibrium and agree with sediment trap fluxes within a factor of ~2. However, unlike the 234Th-POC flux proxy, non-steady stage changes in profiles of 210Pb, the precursor of 210Po, must be considered.We are grateful to T. Hammar and A. Fleer (WHOI) for assistance at sea and in the laboratory. This work was supported originally by National Science Foundation (United States) grant OCE-8819544 to JKC and more recently by OCE-1736591. We thank Stephen Thurston (American Museum of Natural History) for graphics assistance Robert Aller, Steven Beaupre, and two anonymous reviewers for helpful comments
Bench-to-bedside review: The gut as an endocrine organ in the critically ill
In health, hormones secreted from the gastrointestinal tract have an important role in regulating gastrointestinal motility, glucose metabolism and immune function. Recent studies in the critically ill have established that the secretion of a number of these hormones is abnormal, which probably contributes to disordered gastrointestinal and metabolic function. Furthermore, manipulation of endogenous secretion, physiological replacement and supra-physiological treatment (pharmacological dosing) of these hormones are likely to be novel therapeutic targets in this group. Fasting ghrelin concentrations are reduced in the early phase of critical illness, and exogenous ghrelin is a potential therapy that could be used to accelerate gastric emptying and/or stimulate appetite. Motilin agonists, such as erythromycin, are effective gastrokinetic drugs in the critically ill. Cholecystokinin and peptide YY concentrations are elevated in both the fasting and postprandial states, and are likely to contribute to slow gastric emptying. Accordingly, there is a rationale for the therapeutic use of their antagonists. So-called incretin therapies (glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide) warrant evaluation in the management of hyperglycaemia in the critically ill. Exogenous glucagon-like peptide-2 (or its analogues) may be a potential therapy because of its intestinotropic properties
Efficiency of a Brownian information machine
A Brownian information machine extracts work from a heat bath through a
feedback process that exploits the information acquired in a measurement. For
the paradigmatic case of a particle trapped in a harmonic potential, we
determine how power and efficiency for two variants of such a machine operating
cyclically depend on the cycle time and the precision of the positional
measurements. Controlling only the center of the trap leads to a machine that
has zero efficiency at maximum power whereas additional optimal control of the
stiffness of the trap leads to an efficiency bounded between 1/2, which holds
for maximum power, and 1 reached even for finite cycle time in the limit of
perfect measurements.Comment: 9 pages, 2 figure
Summertime cyclones over the Great Lakes Storm Track from 1860â2100: variability, trends, and association with ozone pollution
Prior work indicates that the frequency of summertime mid-latitude cyclones tracking across the Great Lakes Storm Track (GLST, bounded by: 70° W, 90° W, 40° N, and 50° N) are strongly anticorrelated with ozone (Oâ) pollution episodes over the Northeastern United States (US). We apply the MAP Climatology of Mid-latitude Storminess (MCMS) algorithm to 6-hourly sea level pressure fields from over 2500 yr of simulations with the GFDL CM3 global coupled chemistry-climate model. These simulations include (1) 875 yr with constant 1860 emissions and forcings (Pre-industrial Control), (2) five ensemble members for 1860â2005 emissions and forcings (Historical), and (3) future (2006â2100) scenarios following the Representative Concentration Pathways (RCP 4.5 and RCP 8.5) and a sensitivity simulation to isolate the role of climate warming from changes in Oâ precursor emissions (RCP 4.5*). The GFDL CM3 Historical simulations capture the mean and variability of summertime cyclones traversing the GLST within the range determined from four reanalysis datasets. Over the 21st century (2006â2100), the frequency of summertime mid-latitude cyclones in the GLST decreases under the RCP 8.5 scenario and in the RCP 4.5 ensemble mean. These trends are significant when assessed relative to the variability in the Pre-industrial Control simulation. In addition, the RCP 4.5* scenario enables us to determine the relationship between summertime GLST cyclones and high-Oâ events (> 95th percentile) in the absence of emission changes. The summertime GLST cyclone frequency explains less than 10% of the variability in high-Oâ events over the Northeastern US in the model, implying that other factors play an equally important role in determining high-Oâ events
Local and Remote Mean and Extreme Temperature Response to Regional Aerosol Emissions Reductions
The climatic implications of regional aerosol and precursor emissions reductions implemented to protect human health are poorly understood. We investigate the mean and extreme temperature response to regional changes in aerosol emissions using three coupled chemistryclimate models: NOAA GFDL CM3, NCAR CESM1, and NASA GISS-E2. Our approach contrasts a long present-day control simulation from each model (up to 400 years with perpetual year 2000 or 2005 emissions) with 14 individual aerosol emissions perturbation simulations (160240 years each). We perturb emissions of sulfur dioxide (SO2) and/or carbonaceous aerosol within six world regions and assess the statistical significance of mean and extreme temperature responses relative to internal variability determined by the control simulation and across the models. In all models, the global mean surface temperature response (perturbation minus control) to SO2 and/or carbonaceous aerosol is mostly positive (warming) and statistically significant and ranges from +0.17 K (Europe SO2) to -0.06 K (US BC). The warming response to SO2 reductions is strongest in the US and Europe perturbation simulations, both globally and regionally, with Arctic warming up to 1 K due to a removal of European anthropogenic SO2 emissions alone; however, even emissions from regions remote to the Arctic, such as SO2 from India, significantly warm the Arctic by up to 0.5 K. Arctic warming is the most robust response across each model and several aerosol emissions perturbations. The temperature response in the Northern Hemisphere midlatitudes is most sensitive to emissions perturbations within that region. In the tropics, however, the temperature response to emissions perturbations is roughly the same in magnitude as emissions perturbations either within or outside of the tropics. We find that climate sensitivity to regional aerosol perturbations ranges from 0.5 to 1.0 K (W m(exp -2))(exp -1) depending on the region and aerosol composition and is larger than the climate sensitivity to a doubling of CO2 in two of three models. We update previous estimates of regional temperature potential (RTP), a metric for estimating the regional temperature responses to a regional emissions perturbation that can facilitate assessment of climate impacts with integrated assessment models without requiring computationally demanding coupled climate model simulations. These calculations indicate a robust regional response to aerosol forcing within the Northern Hemisphere midlatitudes, regardless of where the aerosol forcing is located longitudinally. We show that regional aerosol perturbations can significantly increase extreme temperatures on the regional scale. Except in the Arctic in the summer, extreme temperature responses largely mirror mean temperature responses to regional aerosol perturbations through a shift of the temperature distributions and are mostly dominated by local rather than remote aerosol forcing
The effect of exogenous glucagon-like peptide-1 on the glycaemic response to small intestinal nutrient in the critically ill: a randomised double-blind placebo-controlled cross over study
IntroductionHyperglycaemia occurs frequently in the critically ill, affects outcome adversely, and is exacerbated by enteral feeding. Furthermore, treatment with insulin in this group is frequently complicated by hypoglycaemia. In healthy patients and those with type 2 diabetes, exogenous glucagon-like peptide-1 (GLP-1) decreases blood glucose by suppressing glucagon, stimulating insulin and slowing gastric emptying. Because the former effects are glucose-dependent, the use of GLP-1 is not associated with hypoglycaemia. The objective of this study was to establish if exogenous GLP-1 attenuates the glycaemic response to enteral nutrition in patients with critical illness induced hyperglycaemia.MethodsSeven mechanically ventilated critically ill patients, not previously known to have diabetes, received two intravenous infusions of GLP-1 (1.2 pmol/kg/min) and placebo (4% albumin) over 270 minutes. Infusions were administered on consecutive days in a randomised, double-blind fashion. On both days a mixed nutrient liquid was infused, via a post-pyloric feeding catheter, at a rate of 1.5 kcal/min between 30 and 270 minutes. Blood glucose and plasma GLP-1, insulin and glucagon concentrations were measured.ResultsIn all patients, exogenous GLP-1 infusion reduced the overall glycaemic response during enteral nutrient stimulation (AUC30-270 min GLP-1 (2077 +/- 144 mmol/l min) vs placebo (2568 +/- 208 mmol/l min); P = 0.02) and the peak blood glucose (GLP-1 (10.1 +/- 0.7 mmol/l) vs placebo (12.7 +/- 1.0 mmol/l); P ConclusionsAcute, exogenous GLP-1 infusion markedly attenuates the glycaemic response to enteral nutrition in the critically ill. These observations suggest that GLP-1 and/or its analogues have the potential to manage hyperglycaemia in the critically ill.Trial registrationAustralian New Zealand Clinical Trials Registry number: ACTRN12609000093280.Adam M. Deane, Marianne J. Chapman, Robert J.L. Fraser, Carly M. Burgstad, Laura K. Besanko and Michael Horowit
Model-dependence of the dispersion correction to the parity-violating asymmetry in elastic scattering
We analyze the dispersion correction to elastic parity violating
electron-proton scattering due to exchange. In particular, we
explore the theoretical uncertainties associated with modeling contributions of
hadronic intermediate states. Taking into account constraints from low- and
high-energy, parity-conserving electroproduction measurements, choosing
different models for contributions from the non-resonant processes, and
performing the corresponding flavor rotations to obtain the electroweak
amplitude, we arrive at an estimate of the uncertainty in the total
contribution to the parity-violating asymmetry. At the kinematics of the Q-Weak
experiment, we obtain a correction to the asymmetry equivalent to a shift in
the proton weak charge of . This should be compared to the
value of the proton's weak charge of \qwp=0.0713\pm0.0008 that includes SM
contributions at tree level and one-loop radiative corrections. Therefore, we
obtain a new Standard Model prediction for the parity-violating asymmetry in
the kinematics of the Q-Weak experiment of . The latter error leads to a relative uncertainty of 2.8% in the
determination of the proton's weak charge, and is dominated by the uncertainty
in the isospin structure of the inclusive cross section. We argue that future
parity-violating inelastic asymmetry measurements at low-to-moderate
and could be exploited to reduce the uncertainty associated with the
dispersion correction. Because the corresponding shift and error bar decrease
monotonically with decreasing beam energy, a determination of the proton's weak
charge with a lower-energy experiment or measurements of "isotope ratios" in
atomic parity-violation could provide a useful cross check on any implications
for physics beyond the Standard Model derived from the Q-Weak measurement.Comment: 25 pages, 17 figures, 4 tables; revised version accepted for
publication in PR
- âŠ