1,050 research outputs found

    IRS 16SW - A New Comoving Group of Young Stars in the Central Parsec of the Milky Way

    Full text link
    One of the most perplexing problems associated with the supermassive black hole at the center of our Galaxy is the origin of the young stars in its close vicinity. Using proper motion measurements and stellar number density counts based on 9 years of diffraction-limited K(2.2 micron)-band speckle imaging at the W. M. Keck 10-meter telescopes, we have identified a new comoving group of stars, which we call the IRS 16SW comoving group, located 1.9" (0.08 pc, in projection) from the central black hole. Four of the five members of this comoving group have been spectroscopically identified as massive young stars, specifically He I emission-line stars and OBN stars. This is the second young comoving group within the central parsec of the Milky Way to be recognized and is the closest, by a factor of 2, in projection to the central black hole. These comoving groups may be the surviving cores of massive infalling star clusters that are undergoing disruption in the strong tidal field of the central supermassive black hole.Comment: 10 pages, 1 figure, accepted for ApJL, uses emulateap

    Galactic Center Youth: Orbits and Origins of the Young Stars in the Central Parsec

    Get PDF
    We present new proper motions for the massive, young stars at the Galactic Center, based on 10 years of diffraction limited data from the Keck telescopes. Our proper motion measurements now have uncertainties of only 1-2 km/s and allow us to explore the origin of the young stars that reside within the sphere of inflience of the supermassive black hole whose strong tidal forces make this region inhospitable for star formation. Their presence, however, may be explained either by in situ star formation in an accretion disk or as the remnants of a massive stellar cluster which spiraled in via dynamical friction. Earlier stellar velocity vectors were used to postulate that all the young stars resided in two counter-rotating stellar disks, which is consistent with both of the above formation scenarios. Our precise proper motions allow us, for the frst time, to determine the orbital parameters of each individual star and thereby to test the hypothesis that the massive stars reside in two stellar disks. Of the 26 young stars in this study that were previously proposed to lie on the inner, clockwise disk, we find that nearly all exhibit orbital constraints consistent with such a disk. On the other hand, of the 7 stars in this study previously proposed to lie in the outer, less well-defhed counter-clockwise disk, 6 exhibit inclinations that are inconsistent with such a disk, bringing into question the existence of the outer disk. Furthermore, for stars in the inner disk that have eccentricity constraints, we find several that have lower limits to the eccentricity of more than 0.4, implying highly eccentric orbits. This stands in contrast to simple accretion disk formation scenarios which typically predict predominantly circular orbits

    Tributes to Professor Edward Tomlinson

    Get PDF

    A Constant Spectral Index for Sagittarius A* During Infrared/X-ray Intensity Variations

    Get PDF
    We report the first time-series of broadband infrared (IR) color measurements of Sgr A*, the variable emission source associated with the supermassive black hole at the Galactic Center. Using the laser and natural guide star AO systems on the Keck II telescope, we imaged Sgr A* in multiple near-infrared broadband filters with a typical cycle time of ~3 min during 4 observing runs (2005-2006), two of which were simultaneous with Chandra X-ray measurements. In spite of the large range of dereddened flux densities for Sgr A* (2-30 mJy), all of our near-IR measurements are consistent with a constant spectral index of alpha = -0.6+-0.2. Furthermore, this value is consistent with the spectral indices observed at X-ray wavelengths during nearly all outbursts; which is consistent with the synchrotron self-Compton model for the production of the X-ray emission. During the coordinated observations, one IR outburst occurs <36 min after a possibly associated X-ray outburst, while several similar IR outbursts show no elevated X-ray emission. A variable X-ray to IR ratio and constant infrared spectral index challenge the notion that the IR and X-ray emission are connected to the same electrons. We, therefore, posit that the population of electrons responsible for both the IR and X-ray emission are generated by an acceleration mechanism that leaves the bulk of the electron energy distribution responsible for the IR emission unchanged, but has a variable high-energy cutoff. Occasionally a tail of electrons >1 GeV is generated, and it is this high-energy tail that gives rise to the X-ray outbursts. One possible explanation for this type of variation is from the turbulence induced by a magnetorotational instability, in which the outer scale length of the turbulence varies and changes the high-energy cutoff.Comment: 11 pages, 7 figures (color), Accepted for publication in ApJ. Resolution (Fig 1&2) downgraded for astro-ph. For full resolution, see http://casa.colorado.edu/~hornstei/sgracolor.pd

    The First Measurement of Spectral Lines in a Short-Period Star Bound to the Galaxy's Central Black Hole: A Paradox of Youth

    Get PDF
    We have obtained the first detection of spectral absorption lines in one of the high-velocity stars in the vicinity of the Galaxy's central supermassive black hole. Both Brgamma (2.1661 micron) and He I (2.1126 micron) are seen in absorption in S0-2 with equivalent widths (2.8+-0.3 Ang & 1.7+-0.4 Ang) and an inferred stellar rotational velocity (220+-40 km/s) that are consistent with that of an O8-B0 dwarf, which suggests that it is a massive (~15 Msun), young (<10 Myr) main sequence star. This presents a major challenge to star formation theories, given the strong tidal forces that prevail over all distances reached by S0-2 in its current orbit (130 - 1900 AU) and the difficulty in migrating this star inward during its lifetime from further out where tidal forces should no longer preclude star formation. The radial velocity measurements (-510+-40 km/s) and our reported proper motions for S0-2 strongly constrain its orbit, providing a direct measure of the black hole mass of 4.1(+-0.6)x10^6(Ro/8kpc)^3 Msun. The Keplerian orbit parameters have uncertainities that are reduced by a factor of 2-3 compared to previously reported values and include, for the first time, an independent solution for the dynamical center; this location, while consistent with the nominal infrared position of Sgr A*, is localized to a factor of 5 more precisely (+-2 milli-arcsec). Furthermore, the ambiguity in the inclination of the orbit is resolved with the addition of the radial velocity measurement, indicating that the star is behind the black hole at the time of closest approach and counter-revolving against the Galaxy. With further radial velocity measurements in the next few years, the orbit of S0-2 will provide the most robust estimate of the distance to the Galactic Center.Comment: 14 pages, Latex, Accepted for Publication in ApJ Letter

    Bradykinin improves postischaemic recovery in the rat heart: role of high energy phosphates, nitric oxide, and prostacyclin

    Get PDF
    Objective: The aim was to define: (1) whether bradykinin administration during reperfusion improves postischaemic myocardial recovery; (2) whether high energy phosphate compounds are involved in the protective effects of bradykinin; and (3) whether bradykinin-induced release of prostacyclin and nitric oxide mediate the protective effects of bradykinin. Methods: In the Langendorff rat heart preparation, coronary flow, left ventricular developed pressure, and, using 31P magnetic resonance spectroscopy, the high energy phosphate compounds phosphocreatine and β-ATP were assessed during 15 min of global ischaemia and 30 min of reperfusion. Administration of 10−7 M bradykinin was started before ischaemia and maintained throughout the experiment (BK-pre). This was compared to 10−7 M bradykinin given exclusively with reperfusion (BK-post). Then 10−7 M bradykinin was given simultaneously with 10−4 M Nω-nitro-L-arginine-methyl ester (BK-LNAME) or 10−5 M indomethacin (BK-indo). Results: In comparison to control hearts, BK-pre exerted a significant protective effect on the postischaemic recovery of coronary flow [71(5)% v 43(4)%, P < 0.05], left ventricular pressure [81(8)% v 42(5)%, P < 0.05], phosphocreatine [105(4)% v 67(8)%, P < 0.05], and β-ATP [78(9)% v 48(7)%, P < 0.05]. With BK-post, recovery of coronary flow [71(4)% v 43(4)%, P < 0.05] and left ventricular pressure [78(4)% v 42(5)%, P < 0.05] significantly improved; however the recovery of phosphocreatine [70(4)% v 67(8)%, NS] and β-ATP [58(2)% v 48(7)%, NS] was not different from control. When bradykinin and L-NAME or indomethacin was given the beneficial effects of bradykinin on ischaemic hearts were abolished. Conclusions: (1) Bradykinin improved postischaemic myocardial recovery when given before ischaemia or starting exclusively with reperfusion; (2) this was only partially related to a protective action on the high energy phosphate compounds during ischaemia; (3) the beneficial effects of bradykinin on ischaemic hearts are dependent from an unrestrained action of prostacyclin and nitric oxid

    The Event Horizon of Sagittarius A*

    Full text link
    Black hole event horizons, causally separating the external universe from compact regions of spacetime, are one of the most exotic predictions of General Relativity (GR). Until recently, their compact size has prevented efforts to study them directly. Here we show that recent millimeter and infrared observations of Sagittarius A* (Sgr A*), the supermassive black hole at the center of the Milky Way, all but requires the existence of a horizon. Specifically, we show that these observations limit the luminosity of any putative visible compact emitting region to below 0.4% of Sgr A*'s accretion luminosity. Equivalently, this requires the efficiency of converting the gravitational binding energy liberated during accretion into radiation and kinetic outflows to be greater than 99.6%, considerably larger than those implicated in Sgr A*, and therefore inconsistent with the existence of such a visible region. Finally, since we are able to frame this argument entirely in terms of observable quantities, our results apply to all geometric theories of gravity that admit stationary solutions, including the commonly discussed f(R) class of theories.Comment: 11 pages, 6 figures, submitted to Ap

    A New Lecture-Tutorial for Teaching about Molecular Excitations and Synchrotron Radiation

    Get PDF
    Light and spectroscopy are among the most important and frequently taught topics in introductory, college-level, general education astronomy courses. This is due to the fact that the vast majority of observational data studied by astronomers arrives at Earth in the form of light. While there are many processes by which matter can emit and absorb light, Astro 101 courses typically limit their instruction to the Bohr model of the atom and electron energy level transitions. In this paper, we report on the development of a new Lecture-Tutorial to help students learn about other processes that are responsible for the emission and absorption of light, namely molecular rotations, molecular vibrations, and the acceleration of charged particles by magnetic fields.Comment: 13 pages, 7 figures Accepted for publication in The Physics Teache

    An open-source probabilistic record linkage process for records with family-level information: Simulation study and applied analysis

    Get PDF
    Research with administrative records involves the challenge of limited information in any single data source to answer policy-related questions. Record linkage provides researchers with a tool to supplement administrative datasets with other information about the same people when identified in separate sources as matched pairs. Several solutions are available for undertaking record linkage, producing linkage keys for merging data sources for positively matched pairs of records. In the current manuscript, we demonstrate a new application of the Python RecordLinkage package to family-based record linkages with machine learning algorithms for probability scoring, which we call probabilistic record linkage for families (PRLF). First, a simulation of administrative records identifies PRLF accuracy with variations in match and data degradation percentages. Accuracy is largely influenced by degradation (e.g., missing data fields, mismatched values) compared to the percentage of simulated matches. Second, an application of data linkage is presented to compare regression model estimate performance across three record linkage solutions (PRLF, ChoiceMaker, and Link Plus). Our findings indicate that all three solutions, when optimized, provide similar results for researchers. Strengths of our process, such as the use of ensemble methods, to improve match accuracy are discussed. We then identify caveats of record linkage in the context of administrative data
    • …
    corecore