491 research outputs found

    Arkansas Cotton Variety Test 2008

    Get PDF
    The primary goal of the Arkansas Cotton Variety Test is to provide unbiased data regarding the agronomic performance of cotton varieties and advanced breeding lines in the major cotton-growing areas of Arkansas. This information helps seed companies establish marketing strategies and assists producers in choosing varieties to plant

    Arkansas Cotton Variety Test 2007

    Get PDF
    The primary goal of the Arkansas Cotton Variety Test is to provide unbiased data regarding the agronomic performance of cotton varieties and advanced breeding lines in the major cotton-growing areas of Arkansas. This information helps seed companies establish marketing strategies and assists producers in choosing varieties to plant

    Arkansas Cotton Variety Test 2003

    Get PDF
    The primary aim of the Arkansas Cotton Variety Test is to provide unbiased data regarding the agronomic performance of cotton varieties and advanced breeding lines in the major cotton-growing areas of Arkansas. This information helps seed dealers establish marketing strategies and assists producers in choosing varieties to plant. In this way, the annual test facilitates the inclusion of new, improved genetic material in Arkansas cotton production

    Large-area CCD imagers for spacecraft applications

    Get PDF
    Backside illuminated CCD imagers with 100 x 160 resolution elements have been fabricated using double level metal technology. Detailed study of the optical performance of such arrays has been performed between 24 C and -40 C using data rates from 10 kHz to 1 MHz. A 400 x 400 array is presently being fabricated

    Arkansas Cotton Variety Test 2004

    Get PDF
    The primary aim of the Arkansas Cotton Variety Test is to provide unbiased data regarding the agronomic performance of cotton varieties and advanced breeding lines in the major cotton-growing areas of Arkansas. This information helps seed dealers establish marketing strategies and assists producers in choosing varieties to plant

    Arkansas Cotton Variety Test 2002

    Get PDF
    The primary aim of the Arkansas Cotton Variety Test is to provide unbiased data regarding the agronomic performance of cotton varieties and advanced breeding lines in the major cotton-growing areas of Arkansas. This information helps seed dealers establish marketing strategies and assists producers in choosing varieties to plant. In this way, the annual test facilitates the inclusion of new, improved genetic material into Arkansas cotton production. Variety adaptation is determined by evaluation of the varieties and lines at four University of Arkansas research stations located near Keiser, Clarkedale, Marianna, and Rohwer. Tests are duplicated in irrigated and non-irrigated culture at the Keiser and Marianna locations. In 2002, 37 entries were evaluated in the main test and 25 were evaluated in the first-year test. This report also includes the Mississippi County Cotton Variety Test (a large-plot, on-farm evaluation of 12 Round-up Ready varieties) and 12 other on-farm cotton variety tests conducted by the University of Arkansas Cooperative Extension Service

    Arkansas Cotton Variety Test 2006

    Get PDF
    The primary goal of the Arkansas Cotton Variety Test is to provide unbiased data regarding the agronomic performance of cotton varieties and advanced breeding lines in the major cotton-growing areas of Arkansas. This information helps seed companies establish marketing strategies and assists producers in choosing varieties to plant

    PDS 144: the first confirmed Herbig Ae-Herbig Ae wide binary

    Get PDF
    PDS 144 is a pair of Herbig Ae stars that are separated by 5.'' 35 on the sky. It has previously been shown to have an A2Ve Herbig Ae star viewed at 83 degrees inclination as its northern member and an A5Ve Herbig Ae star as its southern member. Direct imagery revealed a disk occulting PDS 144 N-the first edge-on disk observed around a Herbig Ae star. The lack of an obvious disk in direct imagery suggested PDS 144 S might be viewed face-on or not physically associated with PDS 144 N. Multi-epoch Hubble Space Telescope imagery of PDS 144 with a 5 year baseline demonstrates PDS 144 N & S are comoving and have a common proper motion with TYC 6782-878-1. TYC 6782-878-1 has previously been identified as a member of Upper Sco sub-association A at d = 145 +/- 2 pc with an age of 5-10 Myr. Ground-based imagery reveals jets and a string of Herbig-Haro knots extending 13' (possibly further) which are aligned to within 7 degrees +/- 6 degrees on the sky. By combining proper motion data and the absence of a dark mid-plane with radial velocity data, we measure the inclination of PDS 144 S to be i = 73 degrees +/- 7 degrees. The radial velocity of the jets from PDS 144 N & S indicates they, and therefore their disks, are misaligned by 25 degrees +/- 9 degrees. This degree of misalignment is similar to that seen in T Tauri wide binaries.Peer reviewe

    Panchromatic Imaging of a Transitional Disk: The Disk of GM Aur in Optical and FUV Scattered Light

    Full text link
    We have imaged GM Aur with HST, detected its disk in scattered light at 1400A and 1650A, and compared these with observations at 3300A, 5550A, 1.1 microns, and 1.6 microns. The scattered light increases at shorter wavelengths. The radial surface brightness profile at 3300A shows no evidence of the 24AU radius cavity that has been previously observed in sub-mm observations. Comparison with dust grain opacity models indicates the surface of the entire disk is populated with sub-micron grains. We have compiled an SED from 0.1 microns to 1 mm, and used it to constrain a model of the star+disk system that includes the sub-mm cavity using the Monte Carlo Radiative Transfer code by Barbara Whitney. The best-fit model image indicates that the cavity should be detectable in the F330W bandpass if the cavity has been cleared of both large and small dust grains, but we do not detect it. The lack of an observed cavity can be explained by the presence of sub-microns grains interior to the sub-mm cavity wall. We suggest one explanation for this which could be due to a planet of mass <9 Jupiter masses interior to 24 AU. A unique cylindrical structure is detected in the FUV data from the Advanced Camera for Surveys/Solar Blind Channel. It is aligned along the system semi-minor axis, but does not resemble an accretion-driven jet. The structure is limb-brightened and extends 190 +/- 35 AU above the disk midplane. The inner radius of the limb-brightening is 40 +/- 10 AU, just beyond the sub-millimeter cavity wall.Comment: 40 pages, 11 figures, 4 tables, accepted to Ap

    NetworKIN: a resource for exploring cellular phosphorylation networks

    Get PDF
    Protein kinases control cellular responses by phosphorylating specific substrates. Recent proteome-wide mapping of protein phosphorylation sites by mass spectrometry has discovered thousands of in vivo sites. Systematically assigning all 518 human kinases to all these sites is a challenging problem. The NetworKIN database (http://networkin.info) integrates consensus substrate motifs with context modelling for improved prediction of cellular kinase–substrate relations. Based on the latest human phosphoproteome from the Phospho.ELM and PhosphoSite databases, the resource offers insight into phosphorylation-modulated interaction networks. Here, we describe how NetworKIN can be used for both global and targeted molecular studies. Via the web interface users can query the database of precomputed kinase–substrate relations or obtain predictions on novel phosphoproteins. The database currently contains a predicted phosphorylation network with 20 224 site-specific interactions involving 3978 phosphoproteins and 73 human kinases from 20 families.Genome Canada (through Ontario Genomics Institute)National Institutes of Health (U.S.) (U54-CA112967)National Institutes of Health (U.S.) (GM60594)European Community’s Human Potential Programme (BioSapiens Network of Excellence (contract number LSHG-CT-2003-503265))European Community’s Human Potential Programme (ADIT Integrated Project (contract number LSHB-CT-2005511065)
    corecore