288 research outputs found

    Optical Flow on Evolving Surfaces with an Application to the Analysis of 4D Microscopy Data

    Full text link
    We extend the concept of optical flow to a dynamic non-Euclidean setting. Optical flow is traditionally computed from a sequence of flat images. It is the purpose of this paper to introduce variational motion estimation for images that are defined on an evolving surface. Volumetric microscopy images depicting a live zebrafish embryo serve as both biological motivation and test data.Comment: The final publication is available at link.springer.co

    A high-quality video denoising algorithm based on reliable motion estimation

    Get PDF
    11th European Conference on Computer Vision, Heraklion, Crete, Greece, September 5-11, 2010, Proceedings, Part IIIAlthough the recent advances in the sparse representations of images have achieved outstanding denosing results, removing real, structured noise in digital videos remains a challenging problem. We show the utility of reliable motion estimation to establish temporal correspondence across frames in order to achieve high-quality video denoising. In this paper, we propose an adaptive video denosing framework that integrates robust optical flow into a non-local means (NLM) framework with noise level estimation. The spatial regularization in optical flow is the key to ensure temporal coherence in removing structured noise. Furthermore, we introduce approximate K-nearest neighbor matching to significantly reduce the complexity of classical NLM methods. Experimental results show that our system is comparable with the state of the art in removing AWGN, and significantly outperforms the state of the art in removing real, structured noise

    Integrating Surface Normal Vectors Using Fast Marching Method

    Full text link
    Abstract. Integration of surface normal vectors is a vital component in many shape reconstruction algorithms that require integrating surface normals to produce their final outputs, the depth values. In this paper, we introduce a fast and efficient method for computing the depth val-ues from surface normal vectors. The method is based on solving the Eikonal equation using Fast Marching Method. We introduce two ideas. First, while it is not possible to solve for the depths Z directly using Fast Marching Method, we solve the Eikonal equation for a function W of the form W = Z+λf. With appropriately chosen values for λ, we can ensure that the Eikonal equation for W can be solved using Fast March-ing Method. Second, we solve for W in two stages with two different λ values, first in a small neighborhood of the given initial point with large λ, and then for the rest of the domain with a smaller λ. This step is needed because of the finite machine precision and rounding-off errors. The proposed method is very easy to implement, and we demonstrate experimentally that, with insignificant loss in precision, our method is considerably faster than the usual optimization method that uses conju-gate gradient to minimize an error function.

    Accelerating Feature Based Registration Using the Johnson-Lindenstrauss Lemma

    Full text link
    Abstract. We introduce an efficient search strategy to substantially accelerate feature based registration. Previous feature based registration algorithms often use truncated search strategies in order to achieve small computation times. Our new accelerated search strategy is based on the realization that the search for corresponding features can be dramat-ically accelerated by utilizing Johnson-Lindenstrauss dimension reduc-tion. Order of magnitude calculations for the search strategy we propose here indicate that the algorithm proposed is more than a million times faster than previously utilized naive search strategies, and this advan-tage in speed is directly translated into an advantage in accuracy as the fast speed enables more comparisons to be made in the same amount of time. We describe the accelerated scheme together with a full complex-ity analysis. The registration algorithm was applied to large transmission electron microscopy (TEM) images of neural ultrastructure. Our experi-ments demonstrate that our algorithm enables alignment of TEM images with increased accuracy and efficiency compared to previous algorithms.

    Automatic 3D facial model and texture reconstruction from range scans

    Get PDF
    This paper presents a fully automatic approach to fitting a generic facial model to detailed range scans of human faces to reconstruct 3D facial models and textures with no manual intervention (such as specifying landmarks). A Scaling Iterative Closest Points (SICP) algorithm is introduced to compute the optimal rigid registrations between the generic model and the range scans with different sizes. And then a new template-fitting method, formulated in an optmization framework of minimizing the physically based elastic energy derived from thin shells, faithfully reconstructs the surfaces and the textures from the range scans and yields dense point correspondences across the reconstructed facial models. Finally, we demonstrate a facial expression transfer method to clone facial expressions from the generic model onto the reconstructed facial models by using the deformation transfer technique

    Reconstructing mass-conserved water surfaces using shape from shading and optical flow

    Get PDF
    This paper introduces a method for reconstructing water from real video footage. Using a single input video, the proposed method produces a more informative reconstruction from a wider range of possible scenes than the current state of the art. The key is the combination of vision algorithms and physics laws. Shape from shading is used to capture the change of the water's surface, from which a vertical velocity gradient field is calculated. Such a gradient field is used to constrain the tracking of horizontal velocities by minimizing an energy function as a weighted combination of mass-conservation and intensity-conservation. Hence the final reconstruction contains a dense velocity field that is incompressible in 3D. The proposed method is efficient and performs consistently well across water of different types

    Solving the Uncalibrated Photometric Stereo Problem using Total Variation

    Get PDF
    International audienceIn this paper we propose a new method to solve the problem of uncalibrated photometric stereo, making very weak assumptions on the properties of the scene to be reconstructed. Our goal is to solve the generalized bas-relief ambiguity (GBR) by performing a total variation regularization of both the estimated normal field and albedo. Unlike most of the previous attempts to solve this ambiguity, our approach does not rely on any prior information about the shape or the albedo, apart from its piecewise smoothness. We test our method on real images and obtain results comparable to the state-of-the-art algorithms
    corecore