19 research outputs found

    A novel ratiometric fluorescent approach for the modulation of the dynamic range of lateral flow immunoassays

    Get PDF
    The majority of lateral flow assays (LFAs) use single-color optical labels to provide a qualitative naked-eye detection, however this detection method displays two important limitations. First, the use of a single-color label makes the LFA prone to results misinterpretation. Second, it does not allow the precise modulation of the sensitivity and dynamic range of the test. To overcome these limitations, a ratiometric approach is developed. In particular, using anti-HIgG functionalized red-fluorescent quantum dots on the conjugate pad (as target dependent labels) and blue-fluorescent nanoparticles fixed on the test line (as target independent reporters), it is possible to generate a wide color palette (blue, purple, pink, red) on the test line. It is believed that this strategy will facilitate the development of LFAs by easily adjusting their analytical properties to the needs required by the specific application

    Stability, size and optical properties of colloidal silver nanoparticles prepared by electrical arc discharge in water

    No full text
    We have fabricated and characterised colloidal silver nanoparticles by the electrical arc discharge method in DI water. Size and optical properties of the silver nanoparticles were studied versus different arc currents. Optical absorption indicates a plasmonic peak at 392 nm for 10 A which increases to 398 nm for 20 A arc current. This reveals that by raising the arc current the size of the nanoparticles increases. Optical absorption of silver nanoparticles after 3 weeks shows precipitation of them in a water medium. The effect of different surfactant and stabilizer concentrations such as cethyl trimethylammonium bromide (CTAB), polyvinyl pyrrolidone (PVP), sodium citrate, sodium dodecyl sulfate (SDS), sodium di-2-ethylsulfosuccinate (AOT) and carboxymethyl cellulose (CMC) on the stability of silver nanoparticles was investigated. The colloidal silver nanoparticles with 100 μM concentration were stable for more than 3 months at 50 μM CTAB and 6 months at 10 μM sodium citrate concentration, respectively. SEM images of the sample prepared at 50 μM CTAB concentration reveal uniform and fine nanoparticles. The mean size from TEM images is about 14 nm. TEM images of the sample prepared at 10 μM sodium citrate concentration show a shell of citrate that covers the silver nanoparticles
    corecore