26 research outputs found

    Lack of Male-Female Differences in Disposition and Esterase Hydrolysis of Ramipril to Ramiprilat in Healthy Volunteers after a Single Oral Dose

    Get PDF
    The objective of this study was to identify differences in disposition and esterase hydrolysis of ramipril between male and female volunteers. Plasma concentration and area under the concentration-time curve until the last measured concentration (AUCt) data of ramipril and its active metabolite ramiprilat (-diacid) were obtained from a randomised, cross-over bioequivalence study in 36 subjects (18 females and 18 males). Participants received a single 5-mg oral dose of two different formulations of ramipril (Formulation I and II). Plasma ramipril and ramiprilat concentrations were determined according to validated methods involving liquid chromatography-mass spectrometry. A total number of 2 � 34 available plasma concentration-time curves of both the parent drug and the metabolite could be analysed, and variations (50�100% coefficient of variation [CV]) in plasma concentrations of both parent drug and metabolite were found. With both the formulations, the mean plasma concentrations-time curves of males and females were identical. The groups of female and male volunteers showed similar yields (AUCt = mg.h/L) of the metabolite ramiprilat (p = 0.37); however, females showed a higher AUCt/kg than males (p = 0.046). This difference was solely attributed to the difference in body weight between males and females (p = 0.00049). In both male and female groups, a subject-dependent yield of active metabolite ramiprilat was demonstrated, which was independent of the formulation.There is a large variation in the ramiprilat t1/2β (50�60% CV). There is a group of subjects who showed a t1/2β of approximately 80 h (15% CV), and two apparent groups with a longer t1/2βfor each formulation (124 h, 22.5% CV; 166 h, 21.6% CV, respectively, p = 0.0013). This variation in the terminal half-life of ramiprilat is not sex related. In all three groups of half-lives, the corresponding Cmax values (mean � SD) of ramiprilat in males and females were identical. Thus, with identical Cmax and half-lives, the difference found in the AUCt /kg of ramiprilat must be due to the difference in dose, as the consequence of the difference in body weight, following a standard dose of 5 mg in both males and females.This study showed clearly that despite subject-dependent hydrolysis of ramipril to the active metabolite ramiprilat, the variability in the rate of hydrolysis between males and females is similar. With a fixed dose (5 mg), females received a higher dose/kg than males and consequently showed a higher AUCt/kg of the active metabolite ramiprilat

    Differences Between Lovastatin and Simvastatin Hydrolysis in Healthy Male and Female Volunteers Gut Hydrolysis of Lovastatin is Twice that of Simvastatin

    Get PDF
    The aim of this pharmacokinetic evaluation was to show the effect of the extra methyl group in simvastatin on esterase hydrolysis between lovastatin and simvastatin in male and female volunteers. This study was based on the plasma concentration-time curves and the pharmacokinetics of lovastatin and simvastatin with its respective active metabolite statin-β-hydroxy acid obtained from two different bioequivalence studies, each with 18 females and 18 males. Results were: • The group of female volunteers showed a higher yield of the active metabolite β-hydroxy acid than the group of males (p < 0.002) for both lovastatin and simvastatin. This difference was not related to the body weight of both groups. • In the male/female groups, subject-dependent yield of active metabolite β-hydroxy acid was demonstrated, which was independent of the formulation. The variation in plasma/liver hydrolysis resulted in a fan-shaped distribution of data points when the AUC t lovastatin was plotted vs. that of the β-hydroxy acid metabolite. In the fan of data points, subgroups could be distinguished, each showing a different regression line and with a different Y-intercept (AUC tβ-hydroxy acid ). • Lovastatin hydrolysis was higher than simvastatin hydrolysis. • It was possible to discriminate between hydrolysis of both lovastatin and simvastatin by plasma/liver or tissue esterase activity. The three subgroups of subjects (males/females) showing different but high yield of statin β-hydroxy acid can be explained by variable hydrolysis of plasma and hepatic microsomal and cytosolic carboxyesterase activity. This study showed clearly that despite the subject-dependent hydrolysis of lovastatin/simvastatin to the active metabolite, males tend to hydrolyse less than females. The extra methyl group in simvastatin results in less hydrolysis due to steric hindrance

    Differences between lovastatin and simvastatin hydrolysis in healthy male and female volunteers: gut hydrolysis of lovastatin is twice that of simvastatin.

    Get PDF
    Contains fulltext : 185010.pdf (publisher's version ) (Open Access)The aim of this pharmacokinetic evaluation was to show the effect of the extra methyl group in simvastatin on esterase hydrolysis between lovastatin and simvastatin in male and female volunteers. This study was based on the plasma concentration-time curves and the pharmacokinetics of lovastatin and simvastatin with its respective active metabolite statin-beta-hydroxy acid obtained from two different bioequivalence studies, each with 18 females and 18 males. Results were: The group of female volunteers showed a higher yield of the active metabolite beta-hydroxy acid than the group of males (p < 0.002) for both lovastatin and simvastatin. This difference was not related to the body weight of both groups. In the male/female groups, subject-dependent yield of active metabolite beta-hydroxy acid was demonstrated, which was independent of the formulation. The variation in plasma/liver hydrolysis resulted in a fan-shaped distribution of data points when the AUCt lovastatin was plotted vs. that of the beta-hydroxy acid metabolite. In the fan of data points, subgroups could be distinguished, each showing a different regression line and with a different Y-intercept (AUCtbeta-hydroxy acid). Lovastatin hydrolysis was higher than simvastatin hydrolysis. It was possible to discriminate between hydrolysis of both lovastatin and simvastatin by plasma/liver or tissue esterase activity. The three subgroups of subjects (males/females) showing different but high yield of statin beta-hydroxy acid can be explained by variable hydrolysis of plasma and hepatic microsomal and cytosolic carboxyesterase activity. This study showed clearly that despite the subject-dependent hydrolysis of lovastatin/simvastatin to the active metabolite, males tend to hydrolyse less than females. The extra methyl group in simvastatin results in less hydrolysis due to steric hindrance

    Lack of male-female differences in disposition and esterase hydrolysis of ramipril to ramiprilat in healthy volunteers after a single oral dose.

    Get PDF
    Contains fulltext : 185079.pdf (publisher's version ) (Open Access)The objective of this study was to identify differences in disposition and esterase hydrolysis of ramipril between male and female volunteers. Plasma concentration and area under the concentration-time curve until the last measured concentration (AUCt) data of ramipril and its active metabolite ramiprilat (-diacid) were obtained from a randomised, cross-over bioequivalence study in 36 subjects (18 females and 18 males). Participants received a single 5-mg oral dose of two different formulations of ramipril (Formulation I and II). Plasma ramipril and ramiprilat concentrations were determined according to validated methods involving liquid chromatography-mass spectrometry. A total number of 2 x 34 available plasma concentration-time curves of both the parent drug and the metabolite could be analysed, and variations (50-100% coefficient of variation [CV]) in plasma concentrations of both parent drug and metabolite were found. With both the formulations, the mean plasma concentrations-time curves of males and females were identical. The groups of female and male volunteers showed similar yields (AUCt = microg x h/L) of the metabolite ramiprilat (p = 0.37); however, females showed a higher AUCt/kg than males (p = 0.046). This difference was solely attributed to the difference in body weight between males and females (p = 0.00049). In both male and female groups, a subject-dependent yield of active metabolite ramiprilat was demonstrated, which was independent of the formulation. There is a large variation in the ramiprilat t1/2beta (50-60% CV). There is a group of subjects who showed a t1/2beta of approximately 80 h (15% CV), and two apparent groups with a longer t1/2beta for each formulation (124 h, 22.5% CV; 166 h, 21.6% CV, respectively, p = 0.0013). This variation in the terminal half-life of ramiprilat is not sex related. In all three groups of half-lives, the corresponding Cmax values (mean +/- SD) of ramiprilat in males and females were identical. Thus, with identical Cmax and half-lives, the difference found in the AUCt/kg of ramiprilat must be due to the difference in dose, as the consequence of the difference in body weight, following a standard dose of 5 mg in both males and females. This study showed clearly that despite subject-dependent hydrolysis of ramipril to the active metabolite ramiprilat, the variability in the rate of hydrolysis between males and females is similar. With a fixed dose (5 mg), females received a higher dose/kg than males and consequently showed a higher AUCt/kg of the active metabolite ramiprilat

    Varable plasma/liver and tissue esterase hydrolis of simvastatin in healthy volunteers after a single oral dose

    No full text
    Item does not contain fulltex

    Modeling the Autoinhibition of Clarithromycin Metabolism during Repeated Oral Administrationâ–¿

    No full text
    Clarithromycin decreases CYP3A4 activity and thus gradually inhibits its own metabolism as well as that of coadministered drugs. The aim of this study was to obtain an understanding of the time course of these changes. The plasma concentration-time profiles of clarithromycin and its active metabolite, 14(R)-hydroxy-clarithromycin, in 12 young healthy volunteers after oral administration of a clarithromycin suspension (500 mg twice a day [b.i.d.] for seven doses) were modeled by population pharmacokinetic analysis in the NONMEM program. The nonlinearity of clarithromycin metabolism was considered during model development, and the metabolite disposition kinetics were assumed to be linear. The absorption kinetics of clarithromycin were best described by a Weibull function model. The pharmacokinetics of clarithromycin and its 14(R)-hydroxyl metabolite were adequately described by a one-compartment model each for clarithromycin and its metabolite as well as an inhibition compartment that reflects the autoinhibition of clarithromycin metabolism. Up to 90% of the apparent total clarithromycin clearance (60 liters/h) was susceptible to reversible autoinhibition, depending on the concentration in the inhibition compartment. The proposed semimechanistic population pharmacokinetic model successfully described the autoinhibition of clarithromycin metabolism and may be used to adjust the doses of other drugs that are metabolized by CYP3A4 and that are coadministered with clarithromycin. Simulations showed that for the standard dose of 500 mg b.i.d., no further increase in the level of exposure occurs after approximately 48 h of treatment. For a 1,000-mg b.i.d. dose, the achievement of steady state is expected to take several days and to achieve a 3.6-fold higher level of clarithromycin exposure than the 500-mg b.i.d. dose. This evaluation provides a rationale for safer and more effective therapy with clarithromycin
    corecore